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ABSTRACT

We present a technique to approximate the worst-case execution
time that combines structural analysis with a loop-bounding algo-
rithm based on local induction variable analysis. Structural analy-
sis is an attractive foundation for several reasons: it delivers better
bounds on the number of executions for each basic block than pre-
vious approaches, its complexity is well understood, and it allows
the compiler to easily work on Java bytecode without requiring ac-
cess to the original program source. There are two major steps. We
first compute (min, max) bounds on the number of iterations for
each loop. Then we use precise structural information to propagate
these bounds to the whole control-flow graph and compute a bound
for each basic block. Such a fine-grained result eases the identi-
fication of infeasible paths and improves the approximation of the
worst-case execution time of a function or method. This analysis
was successfully implemented in an ahead-of-time Java bytecode to
native compiler and produces input for a worst-case execution time
estimator. We describe the effectiveness in reducing the worst-case
execution time for a number of programs from small kernels and
soft-real-time applications.

Categories and Subject Descriptors

D.2.8 [Software Engineering]: Metrics—performance measures,
C.3 [Special-Purpose and Application Based Systems]: Real-
time and embedded systems

General Terms
Algorithms, Experimentation, Measurement, Performance
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1. INTRODUCTION

A central problem in the static approximation of the worst-case
execution time (WCET) is the estimation of the maximal number
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of loop iterations. Then this number can be combined with infor-
mation about the cost to execute instructions (i.e., the loop body) to
obtain an estimate of the worst-case execution time. For many soft-
real-time programs (e.g., an MP3 decoder), knowing the WCET al-
lows better resource usage, but an underestimation of the execution
time is not fatal. A tight upper bound on loop iterations can greatly
reduce overestimations. Several techniques have been presented in
the last years trying to extract enough semantic information from
the object code or program source to understand the behavior of the
induction variables of loops [6, 10].

The simplest idea is to let the user explicitly specify the minimal
and the maximal number of loop iterations. This information must
be supplied as annotations while writing the program. User anno-
tations in the source code are easy to understand but have too many
disadvantages to be useful in practice. The whole responsibility for
the correctness of the bounding information is left to the program-
mer. Furthermore, the annotations must be updated every time the
original program is modified; an omission may lead to errors in the
WCET estimation, and annotations are difficult for complex kinds
of information, e.g., infeasible paths.

One possible solution to this problem is to interpret the program
in an abstract domain. The interpreter then keeps track of possible
variable values on different execution paths [6, 22]. In many situ-
ations, it is then possible to determine when a loop finishes, or if
a given path is feasible. Since it is impossible to analyze all possi-
ble paths in a program, usually heuristics are employed to reduce
the complexity of the interpreter. Such heuristics may, however,
overlook important information.

To avoid the twin problems of an explosion of the number of
paths that are analyzed and the loss of precision caused by simpli-
fications, other approaches have been presented. Healy et al. [10]
propose to analyze loops one-at-a-time, looking at the behavior of
induction variables only. This approach may gather less informa-
tion than abstract interpretation but is guaranteed to finish in a rea-
sonable time.

In this paper we present a technique that is able to precisely prop-
agate the loop iteration bounds computed by this method to every
basic block. Our technique is based on structural analysis, a spe-
cialized form of interval analysis used in optimizing compilers.

Several groups investigated the WCET analysis of real-time Java
programs [2, 17] but since the algorithm presented here, although
implemented in a Java compiler, is language independent, we will
not address language-specific topics in this paper.

The paper is structured as follows: In Section 2, we present our
compiler and instruction duration estimator. In Section 3, we out-
line the basic idea behind the structural analysis, and in Section 4
we explain how to derive precise bounding information for every
basic block in the program’s control-flow graph. In Section 5, we



briefly describe how we estimate the duration of an instruction on a
given architecture, and in Section 6 we present some experimental
results. Section 7 contains the concluding remarks.

2. SYSTEM OVERVIEW

Our worst-case execution time approximator is integrated as a
module in an ahead-of-time Java bytecode to native compiler. The
static analyzer is able to bound the minimal and maximal number
of iterations for various loops using the technique described in this
paper (see Section 4) and is able to identify infeasible paths using
abstract interpretation on linear code segments. The analyzer then
includes the information about the program’s behavior in the output
assembler file in form of (text) comments, which are processed by
the instruction duration estimator.

2.1 Partial abstract interpretation

Before starting any analysis on the semantics of loops we per-
form an abstract interpretation pass over linear code segments, try-
ing to identify infeasible paths and trying to determine the set of
possible values for as many program variables as possible.

Many techniques can be used to determine false paths in a pro-
gram [1, 12], among them abstract interpretation [8, 7] isa common
method in the field of worst-case execution time analysis since it
can safely discover the run-time behavior of the analyzed program.
The program is executed in an abstract domain keeping track of the
possible variable values on each execution path. Due to an expo-
nentially growing set of possible control flow paths in a program,
some trade-off between precision and analysis time must be made.
At control flow merge points (after an “if” or after a loop), infor-
mation coming from different paths is merged. This step loses pre-
cision but, at the same time, reduces the problem complexity.

Since abstract interpretation keeps track of all the possible values
of a variable on a certain path it is possible to derive important
information such as loop bounds and infeasible paths, i.e., paths
which are not executed under any combination of input values.

In our approach we limit the abstract interpretation to linear code
segments, avoiding to iterate over loops. This simplification does
not allow us to bound loops but still enables us to find out the range
of possible values for many variables and to discover several in-
feasible paths. One obvious advantage is the significant reduction
of the number of paths and the consequent decreased need to ap-
ply heuristic approximations. We limit the analysis to a subset of
infeasible paths obeying the following rules:

e Infeasible paths cannot cross loop boundaries (but infeasible
paths in loop bodies or infeasible paths containing loops are
handled).

e Each variable determining an infeasible path cannot be mod-
ified at a loop nesting level greater then the one that contains
the infeasible path itself.

Table 1 shows the results of the infeasible-path analysis alone, on
a set of Java benchmarks: even without crossing loop boundaries,
our tool is able to detect a number of infeasible paths on real appli-
cations.

Although we found some infeasible paths that are relevant to the
WCET analysis since they correspond to the longest path of the
method (see Table 2), the main purpose of the abstract interpreta-
tion pass is to detect the range of possible values for many variables
allowing a better detection of the start or end values of a loop’s in-
duction variable.

A simple example is shown in Figure 1; here the range of pos-
sible values of i at the beginning of the method is unknown, but
the possible values of i within the body of the “if” statement can

Table 1: Infeasible paths in the SPECjvm98 benchmark suite.

Benchmark Infeasible paths
_201_conpress 2

202 j ess 3
_205_raytrace 7

_209_db 2

_213j avac 240
_222_npegaudi o 19

_228_j ack 22

Table 2: Infeasible paths corresponding to the longest path.

Program Infeasible longest paths
j aval ayer 2
I i npack 2
whet st one 1

easily be reduced to positive values allowing our tool to bound the
loop.

void foo(int i) {

if (i >0) {
while (i < 100) {
i ++;
}
}

}

Figure 1: Example for bounded loop

2.2 Estimating loop bounds

Simulation or interpretation of a program in an abstract domain
suffers from the exponential growth of the paths to analyze; there-
fore we choose to base the core of the loop iterations bounding
module on a method developed by the Real-Time Systems Group
at the Florida State University [10]. This technique analyzes loops
by gathering information on when conditional jumps could change
their direction (i.e., when there is a change in the result of the
boolean expression that determines the direction of the jump). In
this section, we briefly summarize this technique to introduce some
concepts and terminology needed to understand our algorithm.

There are four main steps: First the program’s control flow graph
(CFG) is built and the loops and the nodes that could be responsi-
ble for loop termination are identified (iteration branches). These
nodes are then linked using a precedence relation representing the
order in which these nodes could be executed in a loop iteration.
The resulting directed acyclic graph is called precedence graph. In
a second step, for each of these nodes, it is computed when the con-
ditional jump for each iteration branch could change its result based
on the number of iterations. I.e., the algorithm computes, if possi-
ble, the iteration at which the control flow could change at such a
node. In the next step, we determine the range of possible itera-
tions when each of the outgoing edges is reached. In a fourth and
final step, the maximum (and minimum) number of loop iterations
is computed.

This powerful method is able to handle loops with multiple exits
and a variable number of iteration, covering a great range of loops
used in real-time applications. The method can also be extended



to support equality operators in the iteration branches conditions
and to support non-constant number of iterations such as in non-
rectangular loops [11]. This extension requires data structures to
handle non-contiguous integer ranges.

3. STRUCTURAL ANALYSIS

A limitation of the approach presented by Healy et al. is that al-
though the minimal and maximal number of iterations for the loop
header are a safe bound for every block in the loop, this approx-
imation does not take into account different paths inside the loop
body.

To propagate bounding information from a loop header to each
program block we need precise knowledge of the control flow
graph structure, which is normally not available in a standard
compiler. In this section we shortly describe a technique due to
Sharir [20, 16] that allows to derive semantic and structural infor-
mation from a program’s control-flow graph.

In Section 4 we show how this idea can be brought together with
prior work on estimating loop executions to provide precise worst-
case execution time estimations.

Structural analysis is an enhanced interval analysis, which is
able to identify control-flow based on statically predefined struc-
tural patterns. The program’s control-flow graph is decomposed
into a hierarchical tree of subgraphs embedded into each other.
These subgraphs, or regions, represent code patterns or semantic
constructs and can be summarized as follows: blocks, if-then, if-
then-else, while, natural-loop, repeat, proper and improper regions.
Structural analysis handles complex structures and provides infor-
mation in a practical way. This algorithm, in contrast to a normal
analysis based on the dominator relation, can, e.g., easily recognize
cyclic structures with more than one back-edge as a single loop (see
Figure 2).

while (A) { O,
if (B

e O
el se e e

)

Figure 2: Loop with more than a back-edge.

Structural analysis proves particularly useful when the source
code is not available as in a decompiler [3] or, as in our case, in
an optimizing bytecode to native compiler [15].

The structural analysis algorithm, as described by Sharir, builds
a depth-first spanning tree of the control-flow graph and iteratively
tries to recognize regions on the partially reduced graph. The nodes
in the graph are compared to well-known predefined structural pat-
terns, and if a match is found, the region is collapsed to form a new
node. Figure 3 shows an example decomposition of a simple Java
program.

3.1 Extension to complex boolean expressions

The comparison of small graph regions with a series of pre-
defined patterns, as initially presented by Sharir, is not sufficient
to handle every reducible control-flow graph, as some non-cyclic
structures generated by complex boolean expressions in conditional
statements do not follow a general scheme.

These complex boolean expressions are reducible regions that
cannot be mapped to any know predefined pattern and are con-

do {
if (A {
B;
while (O {
if (D
E;
el se
F;
}
G
}
} while (H);
|.

1

J:=If-then-else(D, E, F)
K:=Wile(C, J)
M:=Bl ock(B, K, ©

N:=If-then(A M
O:=Repeat (N, H)
P:=Bl ock(O 1I)

Figure 3: Structural regions for a simple Java program.

nected to the rest of the control-flow graph by two joint nodes'.
Since such a region has a unique entry point, every node is domi-
nated by this region header. Figure 4 shows such a region (dashed
line) for an if-then—else statement (the two joint nodes are shown

in gray).

/”X/\

if (g_ll (B && Q) {
} else {
E;

}
F;

Figure 4: Region that cannot be represented by a predefined
pattern.

To properly identify these commonly found regions, we devel-
oped the following graph coloring algorithm that is performed on
the partially reduced graph: Starting from the node that is supposed
to be the region header (header), after having tried to match it with
a known pattern, we iteratively traverse the graph looking for the
second joint node. We stop, and return an empty region, if we find
a node that has a successor or a predecessor that is not dominated
by the header. Otherwise we create a new region (proper region)
containing the subgraph between the two joint nodes.

W = successors(header)
R:=10
mark the header as visited

LJoint nodes are a set of nodes, normally two, which connect a
region of the graph to the rest of it, removing these joint nodes, this
region remains disconnected.



while W # 0 do
node := oW
R := RUnode
mark node as visited
if a predecessor of node is not dominated by the header then
(* this means that the header is not a joint node *)
return
end if
for all successors s of node do
if s is not dominated by the header then
(* we do not follow back edges *)
return
else
if s is not visited then
W:=WuUs
end if
end if
end for
return R
end while
Figure 5 shows an example with a snapshot of the traversal algo-
rithm. Starting from node K (the possible header of the region) we
traverse all the successors and mark them as visited (gray nodes).
For each node we check if all its successors and predecessors are
dominated by the header. In this case node L is part of the region
while node M is not since node N or node O are not dominated by
the header (K). This means that K is not a proper region header and
we return the empty set.

Figure 5: Snapshot of the traversing algorithm.

4. BASIC BLOCK ITERATIONS

In this section we show how bounds on loop iterations can be
refined on a basic block level using structural analysis. Our idea
is to propagate the loop minimal and maximal number of iterations
to each basic block, adapting these values in accordance with the
different number of iterations of the various paths inside the loop
body. We compute a fine-grained per-block bounding information
that allows the compiler to handle infrequent paths inside a loop
body separately, as shown in Figure 6. The body of the “if” state-
ment is executed only once before exiting the loop, and its duration
should therefore not be included in each loop iteration.

The number of iterations for a block is not directly dependent
on the block’s predecessors but is, instead, determined by the type
of the enclosing semantic construct or structural region, along with
the dominator relation. Therefore the bounds cannot be propagated
easily to every basic block. Figure 7 shows three simple examples
of structural and semantic constructs that influence the number of
iterations (shown between brackets) of a given basic block (striped
node). The number of iterations of a block cannot be derived from

i = 0;
while (true) {

if (i > 10) {
/1l code executed once
br eak;

}

/1 code executed 10 tines

}

Figure 6: An example of a loop.

its direct predecessors, but only from the header (gray node) of the
biggest enclosing structural region (a loop in Figure 7.a and an “if-
then—else” in Figures 7.b and 7.c 2).

[10..10]
[10..10]

[10..10]

[0..10] [0..10]

[10..10]
a) b)

[10..10]

[5..5] [5..5]

[10..10]

c)

Figure 7: An example of block iterations.

To propagate the loop header bounding information to each
block, we perform two main steps: In a first phase we propagate
the minimal and maximal number of iterations along each loop’s
precedence graph (see Section 2.2). In a second phase we spread
this information to every basic block in the control flow graph.

4.1 Execution countsfor iteration branches

Loops are locally analyzed starting from the innermost
one, allowing a simple handling of nested structures. Once
the minimal and maximal iterations for the loop header
([header min..headermas]) have been computed (e.g. with the
method proposed by Healy et al. [10]), we propagate these val-
ues to the blocks with a conditional jump that could determine the
number of iterations of the loop with a top-down traversal of the
precedence graph (these node are usually called iteration branches,
see Section 2.2).

For each iteration branch ¢ we compute the smallest cyclic struc-
tural region scr that contains the node itself, detecting the presence

2In figure 7.b we assume that we have no information on the con-
ditional branch of the gray node and we have to conservatively as-
sume that both white nodes could be executed 10 times.



of inner loops. We then define for each node and each edge in the
precedence graph in topological order a range iter representing the
minimal and maximal number of times the node or edge can be
traversed.

If the smallest cyclic region scr corresponds to the loop I we are
analyzing (this means that  is not part of an inner loop, we assign
the range iter to each outgoing edge e as follows:

1. If we know when the result of the conditional branch at the
end of block 4 will change (in this case we say that 7 is
known), we distinguish the following three situations:

e Ifthe maximum possible value of the range® of the edge
e is smaller than minimum of iter(3):

iter(e) := [max(range(e))..max(range(e))].

This means that the edge will always be taken for the
allowed iterations, and that the minimal and maximal
number of iterations correspond to the maximum of the
range.

e If the minimum of the range of the edge e is bigger than
the maximum of iter (), the edge will never be taken
since this node will never be executed enough times to
allow the control flow to take the edge. Therefore we
set:

iter(e) := [0..0].

e Otherwise we compute the range by considering the
minimum and maximum of the range of the edge e and
the minimum and maximum number of iterations iter
of the iteration branch i:

iter(e) := [ maz(min(iter(i)), min(rng(e)))—
min(rng(e)) + 1..
min(mazx(iter(i)), maz(rng(e)))
—min(rng(e)) +1].

2. If ¢ is unknown (i.e., we do not have any information about
when the jump result will change) for each outgoing edge e
we have to assume that it could be executed any number of
times up to maz(iter(7)):

iter(e) := [0..maz(iter(i))].

If the smallest cyclic region (scr) of 4 does not correspond to the
loop [ we are analyzing, 4 is in an inner loop. In this case we mul-
tiply the computed bounds by the minimal and maximal number of
iterations of the inner loop. Note that while the edge ranges are
dependent on loop iterations, as they indicate when the edge could
be traversed, the iterations (iter) only indicate how many times a
given edge will be traversed. The iterations for a given iteration
branch 7 are then computed from its incoming edges using the fol-
lowing rules:

1. If the scr corresponds to the loop [ we are analyzing, i.e.,
there are no inner loops, iter corresponds to the sum of the it-
erations of each incoming edge if each predecessor is known:

iter(i) := Z

pEpredecessors(i)

iter(edge(p,i)).

Otherwise, as we do not have enough information on the pre-
vious nodes we safely approximate iter with the iter value
of the smallest region header containing s.

3The range of a node or an edge is defined as the set of loop itera-
tions during which it is possible to execute this node or edge.

2. Ifiisthe header of an inner loop scr, we multiply the already
computed iterations of  with the sum of the iterations of each
incoming edge:

iter(i) := z

pEpredecessors(i)

iter(edge(p,1)) - iter(7).

In addition, we store in the node ¢ a multiplication factor
for the inner loop [ defined by the region scr computed as
follows:

mul(l) := Z

pEpredecessors(i)

iter(edge(p,1)).

3. Otherwise, for inner loop nodes, we simply multiply the iter-
ations of the inner loop node ¢ with the region multiplication
factor stored in the header of each outer loop I:

iter(i) := iter (i) - mul(l).

4.2 Basicblocksiterations

Now that the minimal and maximal number of iterations of each
basic block that could influence the flow of control of the program
is known, we have to propagate the bounding information to every
block in the graph.

Figure 8: Biggest cyclic regions.

Once again we take advantage of the available structural infor-
mation and we compute the number of iterations (iter(b)) for each
basic block b. We treat the control-flow graph entry block differ-
ently, setting the minimal and maximal number of iterations to 1.
For each node b we define ber(b) as the biggest cyclic region con-
taining at least one predecessor p of node b and not containing
the node b itself. If ber(b) exists, it means that the node b is the
exit point of one or more loops and that ber(b) corresponds to the
outermost one. If p is the single predecessor of b, and ber(d) is
empty, we simply copy the range of iterations of the edge to the
node (Figure 8.a). Otherwise, we have detected a loop breaking
edge (p — b), and the number of iterations of b is set equal to
the number of iterations of the loop preheader* (Figure 8.b). If we
have more than one predecessor, we look for the first common pre-
decessor of all the predecessors of b (Figure 8.c). If the common

“4The preheader is a special basic block artificially inserted by the
compiler acting as a unique loop header predecessor.



predecessor is an inner loop header, we take the number of itera-
tions of the corresponding preheader, since we detected multiple
loop exits.

The following algorithm summarizes the computation of iter(b)
for nodes that are not iteration branches:

P := predecessors(b)
ber(b) := biggest cyclic region containing p € P and not b
if |[P| = 1then
p := opredecessors(b)
if p is not an iteration branch then
iter(b) := iter(p)

else
if ber = 0 then
iter(b) := iter(p — b)
else
iter(b) := iter(preheader(ber))
end if
end if
else

q := first common predecessor of P
if ¢ is the header of a loop [ and b ¢ [ then
q := pheader(l)
end if
iter(b) := iter(q)
end if

4.3 Complexity

One of the main advantages of this algorithm is that it is able to
compute precise per block bounds in linear time over the number
of iteration nodes while the time to perform the structural analysis
is O(B?) where B is the number of basic blocks.

Healy and Whalley [12] presented a different approach using
automatically detected value-dependent constraints. The compute
per block bounds analyzing the possible outcome of conditional
branches by looking at the induction variable changes on all the
possible paths. The algorithm has a complexity of O(P) where P
is the number of paths in a loop.

4.4 Example

The following simple example shows how the iteration counts
for basic blocks are computed (Figures 9 and 10).

for (i=0; i<100; i++) {

if (i <50 {
if (i > 10 & & somecond)
br eak;
} else {
for (j=0; j<10;)
j ++;
}

Figure 9: Example Java program.

First the bounds for these two loops are computing (see Sec-
tion 2.2): [12..101] for the loop identified by region F and [11..11]
for the loop identified by region C.

Following the rules described in Section 4.1, we compute the
bounds for the iteration branches of both loops: 10, 2, 3, 4, 8 for
loop F and 8 for loop C (gray nodes). At this stage we are al-
ready able to see that some areas of the graph have different itera-
tion bounds depending on the information gathered for the iteration
branches. The algorithm is able to reduce the number of iterations

of the inner loop (region C) from [12..1010] to [11..550], reducing
the inner loop duration by a factor of two.

In the last step we perform the last top—down traversal of the
graph computing the bound for every remaining basic block as ex-
plained in Section 4.2.

5. INSTRUCTION EXECUTION TIME

Once the number of iterations of each basic block is bounded,
we need to compute for each instruction the number of cycles it
takes to execute. Since our algorithm works on the semantics of
the program it is architecture independent and could be used with
precise or approximated hardware analyzers.

There are several approaches trying to precisely compute or ap-
proximate the behavior of the different level of caches (instruction
and data) and pipelines [9, 23, 14]. Other groups measure some of
the paths using static analysis and code instrumentation [18].

On modern processors, the instruction duration depends on the
status of the caches and pipelines. On systems supporting preemp-
tion and a dynamic set of processes it is therefore very difficult to
compute an exact estimation of a process running time.

We are currently targeting soft-real-time applications on Linux
running on the Intel 1A-32 platform. For our application domain
we do not need an exact result and we try to compute a good and
conservative approximation of the worst-case execution time us-
ing some heuristics and approximations. We implemented a first
prototype for the PowerPC platform which used statistic informa-
tion to estimate the pipeline stalls and cache misses [4]. This ap-
proach was further refined replacing some of the empirical approx-
imations with a partial and simplified simulation of the processor
behavior [5].

It should be noted that we approximate the instruction duration
only, and not the the number of times a given instruction (or block)
will be executed. Since the instruction duration estimation is not
the focus of this paper we will describe shortly the basic principle
on which our estimator is based.

To precisely estimate the CPU state (pipeline and caches) before
an instruction is executed and to exactly compute its duration, we
should simulate all the paths leading to this instruction. Since a
complete simulation of each possible execution trace is clearly not
possible, we reduce the duration of the simulated code, relying on
the locality of the effects that a given instruction can have on the
hardware (pipeline and caches). We assume that the effects of an
instruction on the pipeline and caches will be no more significant
after a certain time.

For each basic block b we only simulate the last » instructions
of each incoming path to approximate the pipeline and the content
of the CPU’s execution units before its first instruction. The value
of n is specified as a parameter and normally lies between 50 and
100 instructions, such a value allows us to compute good approxi-
mations in a reasonable time. Experiments show that increasing n
above this threshold, the WCET of an application does not change
any more proving that our principle of locality holds.

During the simulation we use a simplified model of the CPU (an
Intel Pentium 111 in our case) to approximate the execution of the
pipeline updating the state of each processor unit. We can then
analyze the duration of each instruction in the block b using the
simulated initial CPU state.

In this way we can efficiently compute a realistic estimation of
the duration of each instruction for each possible execution path.
In a second step, each path is weighted according to its maximal
number of possible executions (see Section 4). An instruction’s
duration is then computed as the weighted sum of all the durations
for each possible incoming path. The sum of all the instruction of a



block defines its duration which, together with its maximal number
of iterations, is used to compute the longest path of the control flow
graph.

At present we do not analyze the behavior of the processor’s dif-
ferent levels of caches, although an instruction cache hit rate ap-
proximation could be integrated in the partial trace simulator. The
hit rate is measured at run-time for each program with different
traces, and the worst-case value is then used in the worst-case exe-
cution time computation.

6. RESULTS

Testing the soundness of a WCET predictor is a tricky issue
since, for complex examples, the real maximum execution time is
difficult or even impossible to measure. To compare the estimated
values with the measured time we must force the execution of the
longest path, which is not normally known. The easiest way to val-
idate such a tool is therefore the comparison of the results for small
known synthetic applications where the real longest path is known
or computable by hand.

For this reason we first present results for a couple of small syn-
thetic benchmarks that illustrate how our technique can help to re-
duce an eventual worst-case execution time overestimation due to
infrequent paths inside a loop.

All the tests where performed on a 1-GHz Intel Pentium IlI-
based PC. We compare our implementation of method proposed
by Healy et al. [10] with and without the basic block refinement
computed with structural information (see Section 4).

The instruction duration estimations are computed with the tool
presented in Section 5 while the real measurements (to cross-check
with the actual system) where done using the Pentium on-chip per-
formance monitoring hardware.

In the first example (Figure 11.a) there is a simple loop that tra-
verses an array and treats the first half of the elements differently.
The WCET estimation with loop bounding (30.78 s) can be reduced
to (24.38 s) using our analysis, a value that is close to the effective
execution time used by the test program (24.467 s). The overes-
timation (26%) due to the conservative handling of the first “if”
construct was successfully eliminated.

Note that since the analysis on the hardware level computes only
a likely approximation of the instruction duration, the computed
values can also be slightly smaller than the actual worst-case exe-
cution time.

In the second synthetic example (Figure 11.b) an inner loop is
executed only in the last iteration of the main loop: In this case a
precise handling of the different paths inside loop bodies avoids the
need to assume that the inner loop is always executed. The WCET
estimation for this example (0.08 s) is close to the measured value
(0.08 s) while a simple bound on loop results in a huge overestima-
tion (0.69 s) of the maximum running time. These small synthetic
benchmarks show the soundness of our technique: We are able to
propagate loop bounds to every basic block keeping track of differ-
ent path frequencies.

Table 3 shows the results for some bigger applications.
JavalLayer [13] is a pure Java library that decodes, converts and
plays MP3 files (in our benchmark we decode some sample MP3s
to raw audio data). SciMark [19] is a composite Java benchmark
measuring the performance of numerical kernels occurring in sci-
entific and engineering applications (FFT, SOR, sparse matrix mul-
tiply, Monte Carlo integration and dense LU matrix factorization).
_201_compress® is part of the SPEC JVM98 benchmarks [21].

The first column represents the maximum execution time that

SWe replaced the file input with a 4KB chunk of random bytes.

we were able to observe (in cycles), while the second and the third
are the estimated WCET using the approach of Healy et al. and
our enhancement. Note that the maximum observed cycles do not
necessarily correspond to the measured WCET since the input set
causing the WCET is unknown.

All the tests present some improvement over the original algo-
rithm. _201_compress shows a huge improvement since our algo-
rithm is able to detect that a significant part of the compressor main
loop is executed only every 10000 iterations.

Although the actual instruction duration estimator leaves ample
room for improvement, we can safely compare the two techniques:
in both cases we get sound results bounding the maximum exe-
cution of the analyzed programs. Our enhancement allows us to
detect infrequent paths inside loop bodies and therefore reduce the
computed WCET of the program.

7. CONCLUDING REMARKS

This paper describes an approach to tighten the bounds on the
number of iterations of a program’s basic blocks using structural
analysis.

The semantic structures, or language constructs, of the program
are extracted from the Java bytecode binaries. This information,
along with the precomputed loop iteration bounds, is then used to
propagate the minimal and maximal iteration count to each basic
block. As a result, more precise information is available in a fine-
grained manner for each basic block.

Structural analysis is a valuable tool for worst-case execution
time program analysis since this technique allows the compiler to
reduce the maximal bounds of basic block iterations as shown in
this paper. In addition, it allows the compiler to easily work with
low-level representations that are similar to Java bytecode, e.g., na-
tive binaries. Structural analysis also provides valuable informa-
tion that can help other analyses or optimizations. Good estima-
tions of the WCET are important for many soft-real-time systems.
Structural analysis is a technique that is used in many optimizing
compilers, and as our system demonstrates, this technique can be
employed also in the domain of soft real-time systems with good
results.
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Figure 10: Example control flow graph.

A := Block(14, 7)
C:= Wile(8, A
E : = Block(12, 11)
G : = Bl ock(F, 15,
I := Block(H, 21)
for (i = 0; i < 10000; i++) {
if (i < 5000) {
array[i] = -array[i];

if (array[i] > max) {
max = array[i];
}

a)

for(i =0; i < 10; i++) {
for (j =0; j <10; j++) {
it (<9 {
nfi](j] *=nli][j];
} else {
for (k = 0; k <9; k++) {
} nfillj] += nli]l[k];
}
}
}

b)

Figure 11: Test programs.



