Approximation of Worst-case
Execution Time for Preemptive
Multitasking Systems

Matteo Corti, Roberto Brega, Thomas Gross
ETH Zurich

Outline

e Environment

e Other approaches

e Worst-case execution time approximation
e Results

e Conclusions

Matteo Corti, ETH Zurich, LCTES 2000

Environment: User Needs

e Complex mechatronic applications

e Timing correctness

e Concurrency (RT and non-RT tasks)
e Rapid development: dynamic system
e Modern programming languages

e Modern processors

Matteo Corti, ETH Zurich, LCTES 2000

Environment: System

e XOberon:
— Loading/unloading of modules (tasks) at runtime
— Deadline driven scheduler with admission testing
— Resources are shared between RT and non-RT tasks

— Preemptive scheduling
e Modern RISC processors: PowerPC 604e

e Modern language: Oberon-2
— Automatic garbage collection
— Strong type checking

Matteo Corti, ETH Zurich, LCTES 2000

Problem Description

e Admission test
— deadline: determined by the problem
— maxX. duration: determined by the task and the
system

e Preemptive scheduling and processor
complexity hinder a precise computation of
the worst-case execution time (WCET)

e The system is able to stop safely if the given
duration is to small (w/o damaging the robot
or the operator)

Matteo Corti, ETH Zurich, LCTES 2000 5

Issues

e Static program analysis
— automatic loop bounding
— false paths
— infeasible paths
e Instruction length computation
— caches (instruction and data)
— pipelines

Matteo Corti, ETH Zurich, LCTES 2000

Other approaches

e Longest path:

— user annotations

— automatic tools (loop bounding, false paths, ...)
e Instruction length (w/o preemption):

— cache prediction

— active cache management

— pipelines prediction
e Dynamic systems:

— trial-and-error experimentation

Matteo Corti, ETH Zurich, LCTES 2000 7

Predictor Structure

Matteo Corti, ETH Zurich, LCTES 2000

Longest Path ...

instr op op op
instr op op op
instr op op op
instr op op op
braddr |

len, =iter, [} length.,

instr

Matteo Corti, ETH Zurich, LCTES 2000

Block Iterations

e Static program analysis
— loop iteration bounds

o Real-time tasks are relatively well structured
=®» minimal compiler support
— automatic loop bounding for simple loops
— user annotations (driver calls, difficul/t loops,
polymorphism, library calls)
— user hints can be checked at run-time

Matteo Corti, ETH Zurich, LCTES 2000 10

Instruction Length

e Preemption, dynamic set of processes ® no exact
knowledge of the cache and pipeline status

e Maximal instruction lengths (caches are always
empty, instructions always stall, ...) are not useful:
the WCET is too high to be used in practice

e Instruction length approximation using run-time
information about the processor usage during the
task’s execution

Matteo Corti, ETH Zurich, LCTES 2000 11

Performance Monitor ...

e The PowerPC 604e provides hardware
assist to monitor and count predefined
events (cache misses, mispredicted
branches, issued instructions, ...)

e Processes can be marked for runtime
profiling

e Events book-keeping is done in the scheduler
(small overhead)

e NO code instrumentation

Matteo Corti, ETH Zurich, LCTES 2000 12

Performance Monitor

o Not specifically designed to help in program
analysis:

— event counting is not precise (out-of-order
execution)

— many events are not disjoint
— only four different events can be monitored in
parallel

e The instruction length must be
approximated dealing with the
performance monitor (PM) inaccuracies

Matteo Corti, ETH Zurich, LCTES 2000 13

Statistics Gathering

e Problem: choose representative traces

e Solution:
— profile different input sets
— conservative approximation
e The tests confirmed a certain homogeneity

within different execution traces for the
same tasks

Matteo Corti, ETH Zurich, LCTES 2000 14

Cycles Per Instruction (CPI) ...

e The instruction length can be divided in

several components:
— ICP: infinite cache performance (CPU busy and stall time)

— FCE: finite cache performance (effects of memory
hierarchy)

CPI =ICP+FCE

CPIl = busy+ stall + FCE

exec. . +stall .
parallelism
CPI =...

Matteo Corti, ETH Zurich, LCTES 2000 15

+ FCE

pipeline

Cycles Per Instruction (CPI)

e Instruction length components:

— From the processor architecture
e execution time
® Miss penalty

— Estimated with help of run-time data
o stalls
e cache misses
e instruction parallelism

— Estimated by the program structure
e distance between instructions of the same type

Matteo Corti, ETH Zurich, LCTES 2000

16

Testing the Predictor

e First phase: approximation tuning

— simple tests with known WCET (matrix
multiplication, Runge-Kutta, ...)

— different components of the approximator and of
the processor can be tested separately

e Second phase: real applications
— longest path and exact WCET unknown
— not all the paths can be tested

Matteo Corti, ETH Zurich, LCTES 2000 17

Results: Simple Tests

3000 -
2500 -
2000 -

ms 1500 -
1000 -

500 -

0 -

Matteo Corti, ETH Zurich, LCTES 2000

B WCET Bl Approximation

+8%

18

Results: Approximations

e Worst case assumptions about caches and pipeline
produce non usable durations

e Example: no cache approximation (but all other
included)

Test Matr. Mul. Array Max. Pol. Eval.
Measured value 280 ms 520 ms 1252 ms
Full predictor 311 ms 555 ms 1188 ms

No cache hits 1403 ms 1901 ms 3193 ms

Matteo Corti, ETH Zurich, LCTES 2000 19

Results: Real Applications

o LaserPointer: laboratory
machine that moves a laser pen
applied on the tool-center point of B
a 2-joints manipulator

e Hexaglide: a parallel manipulator
with 6 DOF used as a high speed
milling machine

e Robojet: a hydraulically
actuated manipulator used in the
construction of tunnels

Matteo Corti, ETH Zurich, LCTES 2000 20

Results: Real Applications

e Only a few loops had to be manually
bounded

Application User annotations Code Size
Calls Bounds

_aserPointer 5 0/ N.a. 1000 LOC

Hexaglide 4 2 /258 2200 LOC

Robojet 17 0/ 207 1600 LOC

Matteo Corti, ETH Zurich, LCTES 2000 21

Results: Real Applications

1200 - +46%
1000 -
800 -
MS 600 - +570
400 1% +0.3% o +Lro
1 - +
0 3% +11%
200 - _I _I 0% 0%
O | | | I_- I I I 1
>
& & & 6@"&\/ '6‘2’@/ 'e\y‘\\/ & e\{b
c')\(\\ 0'\(\\ 0\'(\\ 00-’\\ @9\\ 0\ 0\ 0\
> 2 >
¥ \V \V

[0 Measured M Predicted

Matteo Corti, ETH Zurich, LCTES 2000 22

Comments ...

e Performance monitors are not designed to
help in program analysis (coarse-grain
information)

e Many CPI components are gathered using
statistical methods

e There is no hard guarantee the result is
correct

o Architecture dependent (different
performance monitors, and processor
architectures)

Matteo Corti, ETH Zurich, LCTES 2000 23

Comments

e Simple approach: minimal user interaction
needed (suitable for application experts)

e No special hardware tools needed

o Useful in complex environments with
preemptive multitasking (dynamic
constellation of real-time tasks)

e Big and real applications can be analyzed

Matteo Corti, ETH Zurich, LCTES 2000 24

Conclusions

e The WCET can be approximated using
run-time data

—little or no user assistance is required

e Processor’s performance monitors can
help in program analysis
—better support desirable

o Approximations are good enough for
many dynamic real-time systems

Matteo Corti, ETH Zurich, LCTES 2000 25

