Contents

Contents

List of figures

List of tables

Introduction
1.1 Abstract

1.2
1.3

XOberon
PowerPC 604e overview

Problem statement

Source-code analysis

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13

Preconditions

Changes in the Oberon language
BOUND

LENGTH

Intermediate representation
Exceptions

Procedure calls

Inline procedures

Imported procedures

Loop detection

Loop termination

User feedback

Loop elimination

10
11
12
13
14
14
14
15
15
16
19
20

A Real-Time Profiler/Analyser for XOberon/PowerPC

Contents

A fine-grained approach to the duration computation

4.1 Hardware and system preconditions

4.2 PowerPC 604e Performance Monitor

4.3 Cycles per instruction

4.4 Instruction length computation

4.5 Finite Cache Effect

4.6 Dispatch stalls

4.7 Execution units stall cycles

4.8 Instruction parallelism

4.9 Some remarks on the instruction length computation

Results

5.1 Test strategy

5.2 Timing correctness when the longest-path trace is known
5.3 Matrix multiplications and array maximum

5.4 Whetstone results

5.5 Runge-Kutta method

5.6 Polynomial evaluation

5.7 Distribution counting

5.8 Drivers timing

5.9 LaserPointer

5.10 Hexaglide

5.11 Related work

5.12 Oberon language changes

5.13 Optimization performance

5.14 Penalties when using the performance monitor.
5.15 Real-time Oberon programs

Conclusions and future directions
6.1 Conclusions

6.2 Future directions

File formats

A.1 Processor description file

A.2 Performance monitor information file
Implementation problems

B.1 Compiler integration
B.2 Constant propagation and reaching definitions
B.3 Performance monitor

23

23
25
27
29
31
31
33
36
37

39

39
40
41
43
44
45
46
46
47
48
48
49
49
50
50

53
53

54
55
55
56
57

57
57
58

A Real-Time Profiler/Analyser for XOberon/PowerPC

Contents

C User interface

C.1 Oberon Compiler
C.2 PowerPC Performance Monitor

D Profiler/Analyser Structure

D.1 List of compiler changes by module
Reference list

Acknowledgments

59

59
60

61
61

63

67

A Real-Time Profiler/Analyser for XOberon/PowerPC

Contents

v A Real-Time Profiler/Analyser for XOberon/PowerPC

List of figures

FIGURE 1. 604e block diagram 4
FIGURE 2. Pipeline diagram 5
FIGURE 3. Compiler structure 13
FIGURE 4. Parse tree structure 15
FIGURE 5. Loop structure 17
FIGURE 6. Loop elimination 21
FIGURE 7. PowerPC 604e Performance Monitor implementation 25
FIGURE 8. Instruction pipelining 30
FIGURE 9. Dependencies in the reservation stations, code example 33
FIGURE 10. Example of test-strategy validation 40
FIGURE 11. The structure of the Whetstone benchmark 44
A Real-Time Profiler/Analyser for XOberon/PowerPC \"

List of figures

Vi

A Real-Time Profiler/Analyser for XOberon/PowerPC

List of tables

TABLE 1. Iterations computing rules 18
TABLE 2. Simplification example 19
TABLE 3. Execution latencies and throughput 29
TABLE 4. Test results 41
TABLE 5. Test data 42
TABLE 6. LaserPointer results 47
TABLE 7. Hexaglide results 48
TABLE 8. Changes in the source code of existing applications 49
TABLE 9. Performance monitor data 50

A Real-Time Profiler/Analyser for XOberon/PowerPC Vii

List of tables

viii A Real-Time Profiler/Analyser for XOberon/PowerPC

CHAPTER 1

Introduction

1.1

Abstract

The most significant difference distinguishing real-time systems from
other computer systems is the importance of correct timing behaviour.
Each hard real-time task has a computation deddéissociated with it;

the deadline has to be met, otherwise the real-time system fails. This con-
straint must always hold, even in the worst case, i.e. when the task's execu-
tion takes a maximum amount of run time. It is therefore obvious that the
maximum execution time, or the maximum duratjcsf a task is of great
importance for the construction and validation of real-time systems.

In many classic articles about scheduling in real-time systems, the maxi-
mum execution time is assumed to be known; unfortunately this is often

not the case. The deadline is something an application programmer can
easily specify, because it is usually part of the real-time implementation,

but the duration is very hard to compute: it is often guessed, with the aid of
experience, and then adjusted according to the results of various tests.

A standard, empiric method, consists in actually running a program on
representative test data, and measure its execution time. While this
approach is clearly useful, it has the same flaws as debugging: the test set
may not cover the whole input-domain, maybe leaving the one yielding to
the worst execution time untested.

1. The deadline is the point in time where the task has to be completed, from the programmer’s
point of view.

2. The duration of a task represents the amount of foreground time that the processor needs to
completely execute it.

A Real-Time Profiler/Analyser for XOberon/PowerPC 1

Introduction

1.2

The ideal solution would be a profiler/analyser that could automati-
cally determine the maximum execution time of a given program at
compile time, but unfortunately this will remain a chimera. The mod-

ern operating systems’ and processors’ complexity, and theoretical
limitations, prevents us from computing the exact and deterministic
maximum duration of a given process.

The goal of this work, is to empower the user with an automatic tool
that computes a good approximation of the maximum execution time
of a given task. The profiler/analyser should automatize and speed-up
one of the most error-prone developing phase of a real-time applica-
tion, thus reducing the probability of faults.

We strongly believe, that the user interaction, in tools for predicting
the timing behaviour of programs coded in high level languages,
should be minimized. Real-time systems are used in research and
industry fields, where noncomputer scientists are the vast majority of
the users and programmers. To expect from the user a complete
knowledge of the underlying system and hardware is not compatible
with the goal of XOberon, which is about providing a framework for
implementators looking for a rapid application development tool.

The work is divided in two major and distinct parts. First, we perform

a syntactical analysis of the program source in order to retrieve its
structure, using compiler optimization techniques. Particular atten-
tion is paid to the automatic computing of the number of iterations
within a loop, allowing the transformation of the program’s data flow
into an acyclic graph. In a second phase, the processor architecture is
analysed for computing the length of a code block. The instruction
length is refined with run-time statistical information, to bring the
worst-case results to values that one can expect when actually run-
ning the program.

XOberon

We integrated our tool in the XOberon hard-real-time operating sys-
tem and compiler [1, 2]. XOberon is a hard real-time operating sys-
tem developed at the Institute of Robotics (IfR), Swiss Federal
Institute of Technology in Zurich, for the control of high-end mecha-
tronic products. It is loosely based on the Oberon System [3]. Oberon
refers simultaneously to a modular, extensible operating system and
to an object-oriented programming language. The most recent version
of XOberon is written in Oberon-2 [4], an improved revision of the

A Real-Time Profiler/Analyser for XOberon/PowerPC

PowerPC 604e overview

Oberon language, and takes advantage of the PowerPC processor
architecture.

The system is particularly suited for the modelling of complex real-
time applications, given its modularity, clean interface definitions and
the presence of a dynamic loader, which checks for interface compat-
ibility. The very fast compiler, along with the dynamic loader allows
for short edit—compile—run cycles.

The operating system presents a clear, object-oriented interface to the
programmer. The framework provides high level abstractions for
most of the real-time programming problems. XOberon solves the
majority of the usual real-time issues by implementing a deadline-
driven schedule with admission testing. The user must provide the
duration and the deadline of a submitted task. The real-time scheduler
preallocates processor time as specified by the duration/deadline
ratio. If the sum of all these ratios remains under 1.0, the scheduler
accepts the task, otherwise it will be rejected.

The compiler, where the tool was integrated, is a slightly modified
version of the PowerPC MacOberon Compiler (Oberon-2), which
finds its roots in the original Ceres Oberon Compiler [3].

1.3 PowerPC 604e overview

This section describes the Motorola PowerPC 604e [12] used for this
work. This small overview presents the processor characteristic con-
cerned by this work, such as the processor and pipeline structure.

The 604e is an implementation of the Powerfanily of reduced
instruction set computer (RISC) microprocessors. It implements the
PowerPC architecture as it is specified for 32-bit addressing, provid-
ing 32-bit effective (logical) addresses, integer data types of 8, 16,
and 32 bits, and floating-point data types of 32 and 64 bits (single-
and double-precision, respectively).

The 604e is a superscalar processor capable of issuing four instruc-
tions simultaneously. As many as seven instructions can finish execu-
tion in parallel, because the 604e has seven execution units that can
operate concurrently. These units are:

+ Floating-point unit (FPU)
« Branch processing unit (BPU)

1. Performance Optimized With Enhanced RISC

A Real-Time Profiler/Analyser for XOberon/PowerPC 3

Introduction

« Condition register unit (CRU)

« Load/store unit (LSU)

« Two single-cycle integer units (SCIUs)
« One multiple-cycle integer unit (MCIU)

Instructions can execute out of order, and execution results can be
made immediately available to subsequent instructions through regis-
ter renaming. However, the completion unit retires (i.e. it commits
results to architectured registers such as FPRs and GPRs) as many as
four instructions per clock cycle in order, ensuring a precise excep-
tion model. To support out-of-order execution, registers are renamed
to prevent write-after-read, and write-after-write conflicts. This
renaming is accomplished by the mapping of architectural registers
into physical ones.

The PowerPC 604e microprocessor uses dynamic branch prediction
to improve the accuracy of instruction prefetching, and can specula-
tively execute through two unresolved branches.

FIGURE 1. 604e block diagram

I P BETELE TOH AT Imm o
L - = an By Fm =rrr e r
- | L1 H T | P |

T B
CoardesTrere e

T JTRLECTE
"% 2 L] i

MreTET rovE ;= ¥ M - 211 B 1]

o, ok B

. -
- L] . 1
Ol LAy WaE MR
I e R L
DTl ™ | ocem ¢

13RI AT, AN

dil- I DA BN)

The 604e has separate memory management units (MMUSs) and sepa-
rate 32-Kbyte on-chip caches for instructions and data. The 604e
implements two 128-entry, two-way set associative translation looka-
side buffers (TLBs), one for instructions and one for data, and pro-
vides support for demand-paged virtual memory address translation

A Real-Time Profiler/Analyser for XOberon/PowerPC

PowerPC 604e overview

and variable-sized block translation. The TLBs and the caches use the
least-recently used (LRU) replacement algorithm.

The 604e has a 64-bit external data bus and a 32-bit address bus. The
604e supports single-beat and burst data transfers for memory
accesses and memory-mapped I/O accesses.

The master instruction pipeline of the 604e has six stages. Some
instructions combine the completion and write-back stages into a sin-
gle cycle. Some instructions (load, store, and floating-point instruc-

tions) flow through additional execution pipeline stages. The six basic
stages of the master instruction pipeline are as follows:

« Fetch (IF)

« Decode (ID)

« Dispatch (DS)

« Execute (E)

e Completion (C)

« Write-back (W)

FIGURE 2. Pipeline diagram

Falch o

L
Do (100

Caspaich (DE)
-

Excaita Hlinga

T
! - - & L] r o -
I S SALE R FFL m=l, [2 1] L0
| 2 % : h .

Wirdn-Hack (Wi}

Because the CRU shares the dispatch bus with the BPU, only one
condition register or branch instruction can be issued per clock cycle.
Both units (CRU and BPU) are treated as a single one by the perform-
ance monitor.

A Real-Time Profiler/Analyser for XOberon/PowerPC 5

Introduction

6 A Real-Time Profiler/Analyser for XOberon/PowerPC

CHAPTER 2

Problem statement

The goal of the work is to build an automatic tool for predicting an
approximation of the maximum duration of a task. The tool has to be able
to analyse the task’s source code, retrieve its structure and determine,
when possible, the number of simple loop iterations. It should compute the
number of repetitions for all the loops that are reconduciblé-@Racon-

struct, with constant starting, ending point and increment. This class of
loops represent the vast majority of the cycles used in real-time programs.

Once the structure of the program is known and all the loops are bounded
(automatically or by the user), the tool should compute the longest path in
the program’s data flow graph, representing the maximum duration.

To achieve the longest path computation, the tool must be able to track the
length of the single instructions generated by the Oberon-2 compiler. It
should use the static processor characteristic described by its architecture,
in conjunction with statistical data about the task’s behaviour in order to
approximate the instruction length, to a meaningful value. When comput-
ing the maximal program duration, the worst case instruction length can-
not be considered, because it has no practical meaning. Statistical data
used for this approximation, include the instructions’ stall cycles, the
instruction parallelism, and the memory effects. The gathered information
should summarize how the processor behaves when executing a given
task.

Because these data vary in a significant way among different tasks, they
must be collected separately for each profiled program. For this informa-

tion to be collected, a performance monitor should be integrated in the

XOberon System, capable of sampling data on a per-task base. The per-
formance monitor should take advantage of the PowerPC 604e special
monitoring hardware.

A Real-Time Profiler/Analyser for XOberon/PowerPC 7

Problem statement

The computed approximation should have a practical meaning,
describing the duration of the tasks to be submitted to the scheduler.
The various approximations should be refined with an experimental
strategy. The error result of various tests should be minimized, trying
to avoid predictions falling under the measured run-time duration.

A Real-Time Profiler/Analyser for XOberon/PowerPC

CHAPTER 3

Source-code analysis

3.1

In this chapter we describe the first phase of the work: the analysis of the
program source, performed to extract its cycle-free data flow, by use of
compiler optimization techniques. The longest path of the its acyclic data
flow, weighted with lengths of each instruction in basic blocks, is equiva-
lent to the maximal duration of the program.

Preconditions

In order to correctly compute the maximum execution time of a task, or
maximal duration, some strong preconditions have to be met. These affect
the program structure and the underlying hardware.

Definition 1 (Application Specific Maximum Execution Time MAXT

The Application Specific Maximum Execution Time of a program is the
maximum time needed to execute this program in the given application
context.

Note that the application-specific maximum execution time is the maxi-
mum CPU time that the task can actually consume, i.e. its duration. When
trying to compute the timing behaviour of a task by means of the sole
source code analysis, one can only derive the upper bound for its maximal
time consumption. Hence the need for defining the calculated maximum
execution time.

Definition 2 (Calculated Maximum Execution Time MAX]J The Cal-
culated Maximum Execution Time of a task is the least upper bound for
the MAXT, of this task that can be derived from the program code, consid-
ering the worst timing behaviour of the underlying hardware.

A Real-Time Profiler/Analyser for XOberon/PowerPC 9

Source-code analysis

3.2

MAXT ¢, as can be seen, is too high to have a practical meaning. The
Approximated Maximum Execution Time is therefore defined as fol-
lows.

Definition 3 (Approximated Maximum Execution Time MAXT)
The Approximated Maximum Execution Time of a Tasks is an approx-
imation of the MAXE value with a given processor behaviour.

The approximations are needed to determine the length of instruc-
tions, this being not deterministic in a pipelined, superscalar proces-
sor with deep memory hierarchies.

The control flow of a program obviously depends on the input data
and global variable settings, determining the theoretical impossibility
to compute the MAXE for any program. This is a corollary of the
termination problem, which states that it is impossible to compute
whether a program will terminate in a finite time with a given input or
not [5].

Theorem 1 (Termination problem) The termination problem
(H := {<M> w| M terminates om}) is not recursive.

If it is impossible to compute if a program will terminate, it is evi-
dent, that its length is not always determinable.

The problems that prevent us from computing the maximum length
are the following:

« The number of loop iterations is not known.

e The depth of recursion is not known.

« Procedure variables instances are not known.

Changes in the Oberon language

We introduced some additions and limitations in the Oberon language
to facilitate the source code analysis. The changes are effective only
in real-time tasks, specified as compiler parameters. It is therefore
allowed to have mixed (real-time and non-real-time) modules.

The changes, in detail, are:

» Recursive procedures, direct or indirect, are not allowed because it
is generally impossible—or only with a great effort—to extract the
recursion depth.

10

A Real-Time Profiler/Analyser for XOberon/PowerPC

BOUND

« No NEW is allowed, because this primitive is not bound neither in
time nor in space.

« The loops that are not reconducible tBGR construct have to be

bounded—that is, the programmer must explicitly specify the
maximal number of iterations.

e Procedure variables are not allowed, with the exception of
Oberon-2 methods.

« The user has the possibility to specify the duration of a single
statement.

We added two new Oberon constructs, the first for loop bounding
(BOUND), the second to specify the length of a particular statement
(LENGTH). Both new keywords are enclosed in comments, so that a
modified real-time program, can also be parsed by a standard

Oberon-2 compiler. The changes to the Oberon-2 syntax [4] are the
following.

Changes in the Oberon syntax

WhileStatement = WHILE Expression DO [(*BOUND
Number*)] StatSequence END.

RepeatStatement = REPEAT [(*BOUND Number*)]
StatSequence UNTIL Expression.

LoopStatement = LOOP [(*BOUND Number®)]
StatSequence END.

ForStatement = FOR ident “;=" Expression TO Expression [BY
Expression] DO [(*BOUND Number*)] StatSequence
END.

statement = [[("LENGTH Number*)] assignment | [
(*LENGTH Number*)] ProcedureCall | IfStatement |
CaseStatement | WhileStatement | RepeatStatement
| LoopStatement | ForStatement | WithStatement | EXIT
| RETURN [expression]].

3.3 BOUND

Our analyser is able to compute the number of loop iterations for the
majority of cycle structures transformalieFOR constructs. For all

of the other loops, the programmer has to specify the maximum
number of iterations, as in the following example:

EXAMPLE 1. BOUND

WHILE ~done DO (*BOUND 1000%)
GetData()
END;

A Real-Time Profiler/Analyser for XOberon/PowerPC 11

Source-code analysis

3.4

This must be done, for every loop whose termination is determined
by an input value, or a device signal, or the termination condition is
too complex to be automatically analysed with a reasonable effort.

The BOUND construct does not only act as a compile-time hint;
indeed code is emitted for a run-time check ensuring that the speci-
fied value will not be exceeded during execution. A new variable is
introduced, and incremented at each loop iteration. In the termination
condition a new check is inserted, and if the variable is greater than
the bound value a run-time exception is generated (Oberon trap). This
allows the user to detect an incorrectly specified value.

EXAMPLE 2. BOUND code generatiof

> @tmp =0 :-» Nwhile >
|

Expression

:rNif Lw:_INC(@tmp) I'—» StatSequence
|

e e

:r@tmpz bound : Ntrap |

|
|
__________ - L— — — — 4

LENGTH

The LENGTH construct is indispensable to profile method calls. The

type of the object is not known at run time, and consequently it is
impossible to compute the length of its methods. With this new state-
ment it is possible to specify the maximum method duration in proc-
essor cycles.

EXAMPLE 3. LENGTH use

FORi:=0TO 1000 DO
(*LENGTH 400*) portObj.GetData()
END;

1. This scheme represents a snapshot of the compiler’s parse tr&€Hok & loop.
Nwhile, Nif andNtrap represent the internal structures corresponding to the Oberon con-
structsWHILE, IF ... THEN ... ELSE ... END, andHALT. The dotted squares are newly
inserted when BOUND is specified.

12

A Real-Time Profiler/Analyser for XOberon/PowerPC

Intermediate representation

The length value cannot be checked at run time, because there is no
way to implement a cycle counter and checker after each instruction.
Particular attention is therefore required.

The use of object orientation in XOberon real-time tasks is usually
moderate; these tasks are programmed in a procedural style with the
exception of drivers software, dramatically reducing the need of the
LENGHT keyword. A similar approach is not suited for plain object-
oriented programming such as Smalltalk or Java, where the proce-
dural programming is not allowed, and were each procedure (method)
call should be prefixed by the length specification.

3.5 Intermediate representation

The XOberon compiler has a parse tree used as an intermediate repre-
sentation between its front end and its back end. This structure is well
suited for the existing Oberon compiler, which generates native code
for the PowerPC and OMI object files (a portable Oberon binary file
[6]). The parse tree, however, is not suited for data flow analysis, and
therefore we introduced a new intermediate representation with basic
blocks. The old intermediate representation was not substituted for
reasons of practicality and time (a complete compiler rewrite were
necessary) but is used in conjunction with the new one.

FIGURE 3. Compiler structure

r—=-"==== A
Source | Parse Tree | Object
Code : | File

|
I Ay |
: Basic '
Blocks ' ,
I | Compiler
| IS — -

The basic block intermediate representation contains information
about the program structure but is not complete and can not be used
for the code generation (for simplicity reasons). A basic block only
contains links to the parse tree node, reducing its complexity and the
time needed for the implementation.

The new dual structure is practical and useful for data flow analysis,
but has the drawback that code changes in the parse tree are generally
very difficult if not impossible.

A Real-Time Profiler/Analyser for XOberon/PowerPC 13

Source-code analysis

3.6

3.7

3.8

Exceptions

In a MAXT analysis the time for exception handling should be
inserted at each statement where an exception may occur. This is true
for exceptional conditions that do not cause a program termination. If
a trap is generated, the program is halted, and the maximal duration
computation makes no sense any more. It would be useless and
wrong to add the time for a divide by zero trap at each division.

Each XOberon task, starts up with no FPU processor support. The
first floating point operation fires an exception. The system enables
the FPU and the control is returned to the task. The time for this
exception is added at the beginning of each procedure using floating
point arithmetics.

This is obviously a worst case analysis, since the exception is fired
only once. Unfortunately there is not the possibility to know in
advance, if a task using the procedure has already generated the
exception. Anyway the number of instruction used to enable the FPU
is very small resulting in a minimal overhead.

Procedure calls

The registers that are used in given procedure are saved and restored
in its prolog and epilog code respectively, in order to preserve the
caller procedure state.

The code for saving, and restoring the floating-point registers is not
generated for each procedure but is part of the system. When a proce-
dure frame is created, a branch to a special memory area is per-
formed, the registers are saved and the program branches back to the
original place. Although these instructions are not generated by the
compiler, they must be computed in the longest path analysis.

Inline procedures

The Oberon compiler allows the use of assembled code procedures
(inline procedures). They are used in the system’s and driver’s pro-
gramming, because they enable the generation of special instructions
not supported by the compiler. If the structure of the used inline pro-
cedures is sequential, i.e. there are no branches, they are decoded, and
the instructions are added to the corresponding basic block.

The presence of branches would require decoding with data flow
analysis of the machine code, which would fall beyond the goal of

14

A Real-Time Profiler/Analyser for XOberon/PowerPC

Imported procedures

3.9

3.10

this work. This is not a severe limitation, because these procedure are
generally made up of a small member of sequential instructions,
which cannot be emitted by the compiler.

Imported procedures

The length of imported procedures is added to the corresponding
block with the aid of a second symbol file containing their predicted
duration. The use of a second file maintains the symbol file compati-
bility.

The structure of the additional symbol file is very simple and no con-
sistency checks are performed.

Loop detection

One of the biggest issue of source code analysis is the elimination of
loops to transform the data flow in an acyclic graph. Due to the theo-
retical impossibility to compute the number of iterations for all the
possible loops, this value, in previous works [7, 8], was asked to pro-
grammer, and included in program source with special keywords.

The simplicity of real-time tasks, implies that the majority of the
loops has & OR-like structure that permits an automatic computation
of the number of iterations.

The parse tree simplifies the task of loop detection, because the whole
information on the program structure is preserved. Loops are identi-
fied by special nodedNhile, andNrepeat), with information about

their back edge. This avoids the construction of the blocks’ dominator
tree.

FIGURE 4. Parse tree structure

T - T T T T T 1
- | Node information:
— | Nwhile —p | * back edge
» user bounded?

I
I
e computed repetitionﬁI
I
I

- I
S "« end node
~ |« termination info
_ ™ _ | < basic block
Expression StatSequencs “- - - - - - — -

With the data stored in the parse tree nodes, loops are easily built
using the following algorithm.

A Real-Time Profiler/Analyser for XOberon/PowerPC 15

Source-code analysis

3.1

ALGORITHM 1. Loop detection

in: head of the loop and back edge
out: all the blocks in the loop

stack := [,
L := head(back edge) 0 tail(back edge);
push(tail(back edge));
WHILE stack # O DO

bb := pop();

FOREACH p := pred(bb) DO

IFp OLTHEN
L:=L0Op;

push(p)
ENDIF

ENDFOR
ENDWHILE

All the predecessors of the block, where the back edge starts, are
recursively added to the loop, until the block at the head of the back
edge has been reached. This works only because the Oberon language
guarantees that the program'’s flow graph is always reducible.

Loop termination

Once the loop has been detected, the profiler tries to determine how it
is terminated. We restrict the analysis to loops terminated by a single
variable, because they represent the majodfyloops used in real-
time tasks. To reduce the set of different termination conditions, con-
stant propagation and constant folding are applied to the code.

Constant propagation is a well-known global flow analysis problem.
The goal of constant propagation is to discover values that are con-
stant on all possible execution paths of a program, and to propagate
these constant values through the program code as far as possible.
Expressions whose operands are all constants, can be evaluated at
compile time (constant folding) and the results propagated further.
The constant expressions found are then substituted in the parse tree
performing a real optimization pass.

After this important first simplification step, the relational expres-
sions are simplified by reducing the operators and eliminating unnec-
essary boolean expressions. The set of commonly used expressions is

1. Generally more than the 95% but for more precise statistics see “Oberon language
changes” on page 49

16

A Real-Time Profiler/Analyser for XOberon/PowerPC

Loop termination

now reduced to a few patterns, which can be analysed by the com-
piler. In our analysis we considered the following structures:

Termination conditions

(j relop const)

boolconst

(j relop const) boolop boolconst
~(j relop const)

Note thatj is, in this example and in the following occurrences, the
variable responsible for loop termination.

The next step is to determine the starting valug e@fhich corre-
sponds to its value before the loop’s head—that is in the loop’s preb-
lock. This value, if existing, was already computed, by the constant
propagation pass.

FIGURE 5. Loop structure

Preblock

Y

Head

Back Edg *

Postblock-e—

The value of] at the end of the loop is included in the terminating
condition.

The last step is to compute hpwhanges within the loop. To simplify

the analysis, only one assignmenj taithin the loop is allowed, and

this assignment can only be an increment or a decrement by an inte-
ger constant. The changeg twan be used for the computation of the
loop’s iterations.

A Real-Time Profiler/Analyser for XOberon/PowerPC 17

Source-code analysis

Loops are analysed starting from the innermost one. This ensures that
when the increment is computed, the number of block repetitions is
known.

To test that the assignment is unique, we perform a reaching-defini-
tions analysis, checking that all the definition$ faching the state-
ment are not in the loop.

A definition of a variable, is a statement that assigns, or may assign,
a value tax. We say that a definitioth reaches a poirqg, if there is a
path from the point immediately followingjto p, such thad is not
invalidated along the path.

We have now all the elements to compute the number of iterations
using the following rules:

« REPEATSs are transformed WHILES inverting the relational oper-
ator and adding the increment to the starting value.

« Thegreater or equal thamndthe less or equal thaoperators are
transformed irgreater thamandless than

- Thegreateroperator is transformed in thessoperator.

 If the loop is aREPEAT an iteration is added, SIN®EPEATS are
executed at least once.

TABLE 1. Iterations computing rules

Operator

Iterations

Condition

o0

start = enddinc =0

start = enddinc# 0

start# end

1
0
00

start < end (inc < 0)[J
(inc > 00 (end-start) mod in# 0)

0

start= end

end- start
inc

start < end (end-start) mod ing 0

o0

start < enddJinc <0

0

start= end

(end— starﬂ
inc

start < endJinc >0

18

A Real-Time Profiler/Analyser for XOberon/PowerPC

User feedback

3.12

EXAMPLE 4. Simplification of the termination condition

i :=200;
C :=100;
inc :=-2;

Debug := FALSE;

REPEAT

i:=inc+i
UNTIL (i = C+1) & ~Debug

TABLE 2. Simplification example

Step Start | End Condition Increment
? ? (i=C+1) & ~Debug ?

constant propagation| 200 ? (i=100+1) & ~FALSE | ?

reaching definitions | 200 ? (i=100+1) & ~FALSE -2

constant folding 200 101 i>101 -2

>, < removal 200 100 i>100 -2

TheREPEAT loop 198 100 i <100 -2

becomes &VHILE

loop

User feedback

The user feedback about the bounding analysis, is an important
aspect, because the tool can help the user to eliminate some common
programming faults. Debugging infinite loops due to wrong termina-
tion conditions or missing variable increments is greatly simplified.
User feedback is also very useful to help the user to adapt old code to
the changes introduced by this work.

The following Oberon errors have been introduced.

Errors related to the new Oberon syntax:

« 601 illegal type oBOUND limit.
« 602 illegal value 0BOUND limit.
« 607 LENGTH must be followed by a simple statement.

Errors related to the new real-time restrictions:

« 603 LOOPs are not permitted in real-time procedures.
e 604 NEW is not allowed in real-time procedures.
« 605 cannot profile inline procedure with branches.

A Real-Time Profiler/Analyser for XOberon/PowerPC 19

Source-code analysis

3.13

Errors related to the loop’s iterations computations:

« 606 computed number of loops is different from the specific
value BOUND).

e 620 infinite loop.
e 621 cannot compute the number of loop iterations.

The tool, thanks to the constant propagation analysis, is able to detect
dead code, but because of the difficulties making changes in the parse
tree, dead code is not automatically removed.

When the iterations are successfully computed aB@WND value

was specified for the loop, the tool checks the bounding validity. If
the user specified value is different from the correct computed one, an
error message is generated (606).

If the user has not bounded the loop, and the analyser is unable to
compute the number of repetitions, an error is shown (621). This
generic error includes the impossibility to compute the starting value
of j, the ending value qf or its increment.

Run-time errors

When a loop’s number of iterations exceeds BIR&JND specified
value a run-time error (Oberon trap) is generated (“Number of loop
iterations exceeds specifiB®@UND value”).

Loop elimination

We can now remove the loops from the data-flow graph. Note that the
loops are removed only from the basic blocks’ graph, no loop unroll-
ing is performed on the generated code.

At each basic block is assigned a field to store the number of time it is
repeated. The loop elimination consists in the removal of its back
edge, and multiplication of this field, by the computed or specified
loop’s iterations number for each basic block it contains. Loop heads
are treated differently depending of the loop’s typeHILE or
REPEAT).

20

A Real-Time Profiler/Analyser for XOberon/PowerPC

Loop elimination

FIGURE 6. Loop elimination

1 1
y" y"
2 2
W3 *wz *Wz.n+vv3.(n-1)
3 3
y y
4 4

With this process we transformed the graph in a directed acyclic
graph (DAG) allowing the computation of the longest path by means
of an adaptation of the Dijkstra algorithm for single-source longest
path [10]. The algorithm solves the single-source longest-path prob-

lem on a weighted, directed graph G:(V,1 EQr the case where all
the weights of the edges are non-negative (w(u, v)>0 | (UR))

ALGORITHM 2. Longest path

S:=0;
Q = VI[G];
WHILE Q # 0 DO
u:=min(Q); Q:=Q\u;
S =S U{u}
FOREACH v 0O Adj[u] DO
IF dv] < d[u] + w(u, v) THEN (* relaxation step *)
d[v] := d[u] + w(u, v);
pred[v] :=u
ENDIF
ENDFOR
ENDWHILE

pred[] specifies the previous node on the longest pifhmaintains
the longest path from the start to the current nadg} is an adja-

1. V = vertices of the graph; E = edges of the graph.

A Real-Time Profiler/Analyser for XOberon/PowerPC 21

Source-code analysis

cency matrix describing the graph;is the queue of node to visg;
stores the longest path.

22 A Real-Time Profiler/Analyser for XOberon/PowerPC

CHAPTER 4

A fine-grained approach to
the duration computation

4.1

In the second phase of this work, the profiler analyses the generated code
to determine the length of the basic blocks. The cycles needed for every
instruction are approximated with the aid of run-time information, and
added to the corresponding block during the code generation.

Hardware and system preconditions

To compute the exact length of an instruction, the underlying hardware
and operating system must have a deterministic behaviour. The precondi-
tions can be stated as follows:

« The effects of caching, pipelining and DMA performance on tasks per-
formance are predictable.

» The operating system must only provide static memory management.
« Asynchronous interrupts are not present.

« Tasks synchronization is provided by a pre run-time scheduler and thus
produces no overhead at run time.

« All resources are always available.
» The task is not interrupted.

Modern operating systems do not comply with these requirements, which
are too strong to be considered. XOberon, as the majority of systems, pro-
vides run-time scheduling, pre-emptive multitasking, and dynamic mem-
ory management.

The dynamic memory management, and therefore the use of the MMUs
(two in the case of the 604e), can cause different length by the address
computation. The use of multitasking introduces context switches, where

A Real-Time Profiler/Analyser for XOberon/PowerPC 23

A fine-grained approach to the duration computation

the cache and pipeline stati are changed in an unknown way, destroy-
ing the predicted single task behaviour.

Timing indeterminism is a common characteristic of modern proces-
sor and systems, where several different user processes run concur-
rently, and where the processor performance can be strongly affected
by the program code.

These restrictions do not prevent us to compute the maximum execu-
tion time for a given task; we could consider that all the memory
accesses are always cache misses, that the branch prediction is always
wrong, and that the pipeline is always flushed. A prediction, using
this worst case assumptions (MAXT would be unfortunately use-

less, because the task’s duration would be too high to have a practical
meaningd.

The analyser and profiler adapts the values specified by the architec-
ture with the aid of statistical data as average stall cycles, average
instruction parallelism, and memory effects to approximate instruc-
tion length with a normal processor behaviour.

Several XOberon tasks were tested to determine if the processor
usage was homogeneous among the different processes. Unluckily
we observed the impossibility to set standard data describing the task
behaviour with a general validity. The presence or absence of float-
ing-point computations, or different data dependencies in the code,
result in very dissimilar behaviours.

Our approach consists in the run-time analysis of the task’s processor
use, monitoring it with the PowerPC 604e built-in Performance Mon-
itor [12, 14].

1. As an example, the mean cache miss penalty for a Motorola MVME 2300 board is
between 20 and 30 cycles, compared to 1 cycle for a L1-cache hit.

24 A Real-Time Profiler/Analyser for XOberon/PowerPC

PowerPC 604e Performance Monitor

FIGURE 7. PowerPC 604e Performance Monitor implementation

Source XCompiler iject
code file
Performance
monitor
XCo_mpiIer/ Timing
Profiler
Processor

specifications

The task is first compiled, and run-time monitored on the XOberon
system. The performance monitor automatically generates a tasks’
description file that is used by the compiler in conjunction with the
static processor specifications to compute the instruction length.

4.2 PowerPC 604e Performance Monitor

The PowerPC 604e microprocessor provides a performance monitor
facility to monitor and count predefined events such as processor
clocks, misses in either the instruction or data cache, instructions dis-
patched to a particular execution unit, mispredicted branches, and
many other occurrences. The count of such events (which may be an
approximation) can be used to trigger a performance monitor excep-
tion, which generates a processor interrupt. The performance monitor
facility is not defined by the PowerPC ISA architecture.

Because a software task scheduler may switch a processor’'s execu-
tion among multiple processes, and because statistics on only a par-
ticular process may be of interest, a process can be marked for
profiling. The marking is done in the machine status register (MSR),
which is part of a task’s context, and is therefore saved and restored at
each context switch. This feature is very useful to monitor only the
to-be-profiled task, without performance losses. The marking is very
simple and avoids any overhead; it consists in three instructions in the
process initialization.

A Real-Time Profiler/Analyser for XOberon/PowerPC 25

A fine-grained approach to the duration computation

ALGORITHM 3. Process marking.

mfmsr! R3 get the current value of MSR
ori 2 R3, PM set the PM bit
mtmsr® R3 writes back the MSR

The performance monitor uses the following 604e-specific special-
purpose registers: four performance monitor counters used to store
the number of times a certain event has been detected, and two moni-
tor mode control registers, which establish the function of the
counters. Although the 604e supports a performance monitor inter-
rupt that is caused by a counter becoming negative, we inserted the
code for gathering statistics in the system’s scheduler, avoiding addi-
tional overhead.

The overhead of the performance monitor routine in the scheduler is
about the 21% (approximately 174 cycles against the 143 cycles of
the original scheduler). Note that the monitoring is user activated and
does not normally affect the system performance.

The performance monitor events are not precisely reported at the
right time; instead they are signalled some cycles after the event has
taken place. A DEC study [15] demonstrates that event counting does
not accurately attribute events to instructions. They based their con-
siderations on the Alpha 21164, the Pentium Pro, and the MIPS
R10000 processors, but due to structural similarities, the considera-
tion can be extended to the Motorola PowerPC 604 and 604e. Out-of-
order speculative execution amplify the problem. This brings several
difficulties when using the performance monitor counter negative
interrupt mechanism. The user-chosen interval between the interrupts
is not precisely respected, and an additional counter is needed to
compute its length. Two of the four counters are thus unusable,
because one is reserved for the interrupt triggering, and the second for
the cycle counting. The integration of the performance monitor rou-
tines in the scheduler avoids the waste of the interrupt-triggering
counter.

The system collects statistics for three events—one counter is always
used to gather the number of cycles—in every scheduler cycle alter-
nately for a total of 35 events. The length of a scheduler period
reduces the inaccuracies of the event reporting, but eliminates the
possibility to analyse the single instructions characteristics.

1. move from MSR
2. or immediate
3. move to MSR

26

A Real-Time Profiler/Analyser for XOberon/PowerPC

Cycles per instruction

4.3

To achieve faster context switching by an interrupt handler call, the
XOberon system saves only the general-purpose register, deliberately
ignoring the floating-point ones. Floating-point computations are not
used in interrupts, because of an important speed improvement. This
has however forced us to compute all the performance-monitor data
with fixed-point arithmetic, which cause a precision loss, and a
smaller maximum value for the used variables. Because of the order
of magnitude of the values returned only their incremental mean
value is stored.

One of the new features introduced in the PowerPC 604e over the 604
is the condition register unit (CRU). The CRU executes all the condi-
tion register logical and flow control instructions freeing the branch
prediction unit (BPU). Unfortunately the dispatch bus is shared
between the two, so that only one condition register or branch instruc-
tion can be issued per clock cycle. The performance monitor was not
updated and continues to consider both units as a single one. Conse-
qguently the profiler/analyser ignores the presence of the CRU; its sta-
tistics are included in branch prediction unit ones.

Cycles per instruction

The simplest way to compute an instruction’s time is to use the popu-
lar instruction per cycl€IPC) metric. This is a poor metric to be used
when discussing processor performance and the instructions’ timing
behaviour, because it does not lend itself to intuition about what the
components of that performance are. The differentiation among the
different instruction types is lost.

With a given IPC an integer load will be treated as an integer addi-
tion, dividing the memory effects and integer pipeline stalls to both of
them. In the following example, the left path (three additions) would
be erroneously considered equivalent to the right path (three loads),
but they obviously have very different timing characteristics.

A Real-Time Profiler/Analyser for XOberon/PowerPC 27

A fine-grained approach to the duration computation

EXAMPLE 5. CPI for add! and load paths

IF
add r3, r4, r5 Iwa r3, 0(r4)
add r3, r4, r5 Iwa r3, 0(r4)
add r3, r4, r5 Iwa r3, 0(r4)

\/

The IPC approximation is unacceptable for our longest path computa-
tion because it could easily bring to the choice of the wrong path. The
inverse of IPC is theycle per instructiof{CPI) metric, i.e. the mean
instruction length. The advantage of the CPI metric over IPC relies in
the fact that the first can be divided into its major components to
achieve a better granularity.

CPI = (cycles per evepf{events per intsructign (EQ1)
time = zlengtrgtatic O 2
me= TR =22

The total CPI for a given processor architecture is the sum of an infi-
nite-cache performance and a finite-cache effect (FCE). The infinite-
cache performance is the CPI for the core processor under the
assumption that there are no cache misses, on the other hand, the FCE
accounts for the effects of the memory hierarchy.

FCE = (cycles per migd{misses per instructign (EQ 3)

The misses-per-instruction component is commonly called the miss
rate, and the cycle-per-miss component is called the miss penalty.

The FCE separation is not enough to have a good grasping of the
processor usage by the different instructions. A natural and obvious
additional classification is based on the different execution units. All
the instructions dispatched to the same unit belong to the same group
with common characteristic. The PowerPC performance monitor pro-
vides very fine-grained information about the different units, result-
ing in the perfect integration of the preceding taxonomy.

1. add = add between registers; lwa = load word algebric.

28

A Real-Time Profiler/Analyser for XOberon/PowerPC

Instruction length computation

The tool can distinguish the mean instruction length, mean cycles,
and idle time on a per-unit base, achieving a better granularity. To
compute the instruction length: however, the mean instruction paral-
lelism (p) has to be introduced, specifying how many instructions are
executing concurrently,

The instructions length can now be expressed with the following
equation:

length+ stall,;;

CPI = + stallyispatcnt FCE (EQ4)

The stall cycles in the dispatch unit (gfgllatch represent the time,
measured in cycles, the instruction is blocked waiting for being dis-
patched to the execution units.

4.4 Instruction length computation

The static length of instructions is specified by the processor architec-
ture, and is summarized in the following table.

TABLE 3. Execution latencies and throughput

Instruction Latency Throughput
Most integer instructions 1 1
Integer multiply (32x32) 4 2
Integer multiply (others) 3 1
Integer divide 20 19
Integer load 2 1
Integer store 3 1
Floating-point store 3 1
Double-precision floating-point multiply/add 3 1
Single-precision floating-point divide 18 18
Double-precision floating-point divide 31 31

The multiple cycle units (FPU, MCIU, and LSU) have internal pipe-
lines, causing different throughput values depending on the instruc-
tion type. The consequence is that we are not able to know the length
of a given instruction, even if we do not consider memory effects and
pipeline stalls. The lack of the longest path trace, hinders the simula-
tion of the pipeline, forcing the tool to find an approximation indicat-
ing whether a given instruction is pipelined or not.

The compiler computes the distance (d) between the current instruc-
tion and the last one executed by the same unit. If the distance is less

A Real-Time Profiler/Analyser for XOberon/PowerPC 29

A fine-grained approach to the duration computation

than a given constant (digk) the instruction is considered to be
pipelined with its length corresponding to the specified throughput,
otherwise the length is considered equal to the instruction’s latency.
The constant representing the maximal distance, differs among the
three multiple cycle units, because they have different mean instruc-
tion length. Values between four and eight produced the best results
in the performed tests. Thus equation 4 becomes:

U |atency+ stall,.
E yp unit Sta”dispatch+ FCE d> diSLmt
Pl - Dh P (EQ5)
rou utr stall,,;
throug pp H + stallyspaent FCE - ds disty
u

The problem with this approximation is that the distance is accounted
only inside basic blocks. The first instruction of a given type in a
block is considered always nonpipelined. This can result in big inac-
curacies when the average length of the basic block is short (less than
10 instructions) since the percentage of wrong instructions length
becomes significant.

FIGURE 8. Instruction pipelining

Basic Block

MCIU

Distance

MCIU

To overcome the issue, the following strategy has been implemented:
since the compiler has no information about the preceding block, it
can only assume that the structure will be similar for the whole task.
Using the global loads of the execution units (gathered with the per-
formance monitor), it computes the probability that a given instruc-
tion type will be present in the last§ instructions. If the probability

is greater than a given threshold value we consider the length equal to
its throughput.

prob = 1-(1- Ioaqmt)dist“"it (EQ 6)

To check how this approximation works, we confronted known mean
instruction lengths (retrieved with the performance monitor) with the
predicted ones, confirming the soundness of the method.

30

A Real-Time Profiler/Analyser for XOberon/PowerPC

Finite Cache Effect

4.5

4.6

By separating the CPI in its major components the memory effects
can be accounted to the concerned instructions (loads and stores),
transforming equation 5 in its final form:

[FCE,t = FCE unitOLSU_

EQ 7
HFCE,, =0 unitdLSU €D

latency+ stall,,;;

p + Sta'lldispatch+ I:CEunit d> distmit
(EQ)

throughput+ stall ...
g pp umt+ Sta"dispatch+ FCEunit dS dist‘mit

CPI =

I o

Finite Cache Effect

Equation 3 describes the theoretical computation of the finite cache
effect; unfortunately we cannot directly retrieve the two needed com-

ponents from the performance monitor. The equation, separating the
memory accesses in load and stores, can be expanded to:

FCE = misg,qbenalty,,q+ Misg;oeLhenalty e (EQ9)

Unluckily the performance monitor is unable to return the store miss
penalty; we consider it equal to the load miss one, because of the
great similarity of the two operations.

FCE = (misg,,q[Miss,..o [Penalty, 4 (EQ 10)

Dispatch stalls

The stall cycles in the dispatch unit are an important component of
the CPI computation, describing processor hardware limitations, such
as the lack of units and the lack of registers. The stall cycles in these
units include even the instruction cache misses that are reported as a
lack of fetched instructions.

In detail, the performance monitor gives us the following information
about the dispatch stalls:

« Number of cycles the dispatch unit stalls, waiting for instructions.
« Number of cycles the dispatch unit stalls due to unavailability of
reorder buffer entry.

« Number of cycles the dispatch unit stalls due to no floating-point
register rename buffer available.

A Real-Time Profiler/Analyser for XOberon/PowerPC 31

A fine-grained approach to the duration computation

« Number of cycles the dispatch unit stalls due to no unit available.

« Number of cycles the dispatch unit stalls due to unavailability of
general purpose register rename buffer.

« Number of cycles the dispatch unit stalls due to no condition regis-
ter rename buffer available.

« Number of cycles the dispatch unit stalls due to CTR/IRer-
lock.

The dispatch unit data are very fine grained, but we need a general
criteria for the dispatch unit stall cycles, which corresponds to the
logical union of all the above events.

There is no information about the superposition of the different
events, and therefore there is no way to correctly compute a good
melting of these events.

The dispatch unit has a four instruction length queue but the mean
occupation is not monitored. Even worse is the fact that a reported
stall could be caused by one, two, three or four instructions simulta-
neously, without noticing the difference. A stall caused by every
instruction in the queue simultaneously will be reported as a single
stall cycle. On the other hand, some stalls could be reported too early
in the queue and be resolved at the time of the dispatch.

EXAMPLE 6. Dispatch unit queue instructior? example

add Dispatch queue
add
Stall (no unit) load
Stall (no unit) fdiv
N
fdiv FPu load -su

In the preceding example two instructions stalls due to unit unavaila-
bility, but a single stall cycle is reported.

1. CTR = Count register
LR = Link register.

2. add = integer addition (SCIU)
load = data load (LSU)
fdiv = floating-point division (FPU)

32

A Real-Time Profiler/Analyser for XOberon/PowerPC

Execution units stall cycles

4.7

Several tests with different approximation strategies for the mean
number of cycles an instruction stalls in the dispatch unit, leaded to
the following computation:

Pstan = 1- |_| (1_ peven? (EQ11)
event
|j_C_IPI
Sta”dispatch = Pstall 4 (EQ 12)

Pevent IS the probability a given event will happen. This value is
reported by the performance monitor, since it corresponds to the per-
centage of stall cycles for each evenggpis the probability that a
stall in the dispatch unit will take place, in other words, the inverse of
the union of the probability that there are no stalls for each event.

With this approximation, we assume that no more that one instruction
will stall at the same time in the dispatch unit. This is obviously not
true, but gives good results.

Execution units stall cycles

The performance monitor specifications state that there is the possi-
bility to gather the number of stall cycles for each unit. Unfortunately
this does not hold. Each unit has two reservation stations where the
dispatched instructions wait for execution. The performance monitor
signals the number of data dependencies of the instructions in the
unit’s reservation stations. The number of returned stall cycles is thus
higher than the right value (i.e. the stall cycles in the execution unit),
because there is no guarantee that a dependence encountered in a res-
ervation station will not be resolved when the instruction is executed.

FIGURE 9. Dependencies in the reservation stations, code exambple

Reservation’s stations Unit

—| fmul R5, R4, R4 fmulR4,R3,R3 | fmul R5, R2, R2

In this example a stall is reported because the two instructions waiting
in the reservation stations depend on the result of the instruction exe-

1. fmul = floating-point multiplication

A Real-Time Profiler/Analyser for XOberon/PowerPC 33

A fine-grained approach to the duration computation

cuting in unit. However, no real stall will occur because when the
instructions will reach the unit all of the operands will be available.

Stalls in single cycle units

The length of the instructions dispatched to this class of units is obvi-
ously known (one cycle). This allows us to compute the number of
stall cycles in the following way:

(1—idle) ,

stall =
load

(EQ 13)

The time that an instruction remains in a given unit is the inverse of
the unit's load, multiplied by the nonidle time, and indicates the sum
of the instruction length (one) with the number of stall cycles. By
reversing this formula equation 13 can be obtained, which returns the
stall cycles of the target unit.

Since small errors can occur in the load and idle time monitoring, the
computed stall cycles value is checked against negative values.

The computed, and correct, number of stall cycles greatly differs

from the one returned from the performance monitor, whose value is
often out of its validity range. In some tests, with tasks containing a

lot of data dependencies, both single cycle integer units reported that
the whole processing time was spent with stall cycles; the result was
obviously wrong since the tasks terminated correctly.

Stalls in multiple cycles units

The mean instruction length in multiple cycle execution units (MCIU,
FPU, and LSU) in not constant. This hinders the use of the preceding
formula (equation 13) for the computation of the stall cycle.

The only information that the performance monitor provides, is the
number of dependencies in the reservation stations (wrongly identi-
fied as number of stalls). Unfortunately the value is too distant from
the correct one to be used without massive refinements.

Another problem in the stall cycle computations, is that the perform-
ance monitor does not return the total number of LSU stalls, or more
precisely the number of dependencies in the reservation stations, but
various subsets of the value:

« Number of cycles the LSU stalls due to Blat cache busy.

34

A Real-Time Profiler/Analyser for XOberon/PowerPC

Execution units stall cycles

« Number of cycles the LSU stalls due to a full store-queue.

« Number of cycles the LSU stalls due to operands not available in
the reservation station.

« Number of cycles the LSU stalls due to busy MMU.
« Number of cycles the LSU stalls due to full load-queue.
« Number of cycles the LSU stalls due to address collision.

As with the dispatch unit stalls we do not have the possibility to
deduce the union of the different events, and an approximation must
be computed.

Investigating these values with experimental methods, the events
resulted generally disjoint. The LSU stall probability is therefore
computed as the sum of the different events probability.

stall gy = stallyyent (EQ 14)

event

To adjust the stalls returned by the performance monitor we first com-
pute the mean occupation (in instructions) of the reservation stations
considering them as an M/M/1 queue, and the execution unit as
server. The unit’s (server) utilization factor is:

p = (1-idle) (EQ 15)

With the utilization factor (equation 15) it is now possible to compute
the average number of instructions in the reservation station (queue
length):
p2
NQ = I—:-B
(EQ 16)

Since our queue is finite, values of ldre rounded down to a maxi-
mum of two.

The probability that an instruction will stall in a reservation station

corresponds to the inverse of the probability that no instruction will

stall in the queue. By reversing the equation the probability that an
instruction will stall in a given unit can be obtained.

N

Pstan = 1= (1= Pstay)e (EQ17)

instructio

1. Bus Interface Unit

A Real-Time Profiler/Analyser for XOberon/PowerPC 35

A fine-grained approach to the duration computation

4.8

Pstall ueion = 17 No/1~ Pstan (EQ 18)

The results obtained during several tests confirm that the stall cycles
computed with equation 18 are closer to the reality than the moni-

tored values, since the stalls are no more considered globally on all of
the instructions present in the queue. However the approximation is
not able to consider that some dependencies will be resolved before
the instruction really enters the unit.

Instruction parallelism

The mean instruction parallelism is computed using global values
gathered on a per-task basis. The parallelism can be determined by
reversing equation 4; the overall CPI is provided by the performance
monitor and the mean stall values are already approximated, but the
mean instruction length needs to be computed.

To compute the mean instruction length (in the multiple cycle execu-

tion units) the mean stall value precedently computed can be used,
subtracting it from the average time an instruction remains in the unit

—in the same way as the stalls were approximated for the single
cycle units.

B length,,i =1 single cycle
3 lengthyy, = — —181 _stay fiple cycl o9
J ength,,i; = ioad load” St@ multiple cycle

loanHDengtmnn

length = 42
|Oanm

(EQ 20)

The total mean instruction length is the weighted mean of all the
instruction classes.

The elements are now available for computing the mean instruction
parallelism, which indicates how many instructions are executing
concurrently.

: length+ stall,,;
- CPI- stals,— (load g, (FCE)

p (EQ21)

To include the finite cache effect we need to multiply it by the per-
centage of load/store instructions, limiting its effects to this class of
instructions.

36

A Real-Time Profiler/Analyser for XOberon/PowerPC

Some remarks on the instruction length computation

4.9 Some remarks on the instruction length
computation

This chapter describes the approximations used to compute the
instruction length, in cycles, of the generated code. We used several
probabilistic formulae and queuing theory increasing the possibility
of errors. The above computations were built and refined with an
experimental method based on several tests. We were forced to this
approach by the hardware used, which does not give us the possibility
to monitor the single instructions and does not provide all the needed
data.

A Real-Time Profiler/Analyser for XOberon/PowerPC 37

A fine-grained approach to the duration computation

38 A Real-Time Profiler/Analyser for XOberon/PowerPC

CHAPTER 5

Results

5.1

This section presents the test strategy used for the tool evaluation, and the
results obtained. The effects of the language and system changes are also
evaluated.

Test strategy

There are several ways to judge the correctness of a profiler/analyser. First
of all, the tool has to meet the requirements, in other words it must return
values that have a practical meaning and can be submitted to the scheduler
as the maximal duration.

This can be checked by letting the task run and measuring its length,
which must always fall under the predicted limit. This kind of test is not
very useful in the developing phase, since it is very difficult to state the
correctness of the results. Moreover for large tasks we are not able to find
the MAXT by hand, and therefore we are not able to check for the sound-
ness of the predictor.

In order to have a better understanding of the produced results, a set of
short typical tasks, where the longest path is a priori known, was tested.
This gave us the opportunity to see the errors that the predictor makes
when computing the instruction length, and eventually compare the differ-
ent prediction strategies.

The drawback of the small-tests strategy is the homogeneity of the pro-

duced code. On the other hand, if the code exhibits strong variations, we

are not able any more to understand the real meaning of the results, and,
possibly, the causes of the errors.

A Real-Time Profiler/Analyser for XOberon/PowerPC 39

Results

5.2

Each new approximation strategy was tested on all of our examples—
even the simplest ones—gathering accuracies of the various results.
The results, or more appropriately, the errors were then analysed to
check the correctness of the new strategy. The criteria used for
accepting a new strategy can be summarized as follows:

« No predicted time must fall under the 95% of the measured (run-
time) value.

« The average distance between the actual run-time and the pre-
dicted time should be significantly smaller than the one returned
by the old strategy.

FIGURE 10. Example of test-strategy validation

Prediction error

A

I Accepted strategies

Rejected strategies

Acceptance range

10%

Tests

|
|
-5% l
|
|
|

The use of an experimental step-wise refinement technique was nec-
essary due to the lack of information. The performance monitor is not

powerful enough to allow a precise strategy development, and on the
other hand, the system behaviour is not known.

Timing correctness when the longest-path
trace is known

As precedently stated the set of the test samples with a known longest
path trace was chosen, heading for simplicity, in order to maintain the
homogeneity of the code behaviour. After the very first tests, the
assortment of examples was concentrated on a handful of tasks
including:

 Integer matrices multiplications (MatMul)

Floating point matrices multiplications (MatMulFP)

e Searching the maximum in an integer array (Max)

Searching the maximum in a floating point array (MaxFP)

40

A Real-Time Profiler/Analyser for XOberon/PowerPC

Matrix multiplications and array maximum

« A modified Whetstone benchmark [7]
* Runge-Kutta method

« Polynomial evaluation

« Distribution Counting

The following table summarize the errors produced by the predictor
with eight base tests.

TABLE 4. Test results

Test Execution time Predicted time Error

MatMul 279.577 ms 310.553 ms +11.08M%
MatMulFP 333.145 mg 351.753 ms +5.59%
Max 520.094 ms 555.015 mis +6.71%%
MaxFP 854.930 mg 814.516 ms -4.73%
Whetstone 1958.308 ms 4248.548 ms +116.95%
Runge-Kutta 79.052 ms$ 108.648 ms +37.44
Polynomial evaluation 1251.194 ms 1187.591 ms -5.08%
Distribution counting 2388.816 mp 2579.051 ms +7.96%

The tests show good results, with the majority of the error rates in the
range of -5% to +10%. The following sections explain in detail the
causes of the pessimistic behaviour of the prediction.

5.3 Matrix multiplications and array maximum

The code of the first four tests is simple, nevertheless the examples
include a good mixture of integer and floating-point computations,
branches, condition checking, and address computations. The load-
store unit is heavily stressed in the Max-tests where the memory
access are also tested.

ALGORITHM 4. Matrix multiplications

FOR1:=1TO loop DO
FORi:=0TO dim-1 DO
FORj:=0TOdim-1DO
val :=0;
FORk:=0TOdim-1DO
val ;= val + m1][i, k] * m2[k, j]
END;
m3[i, j] := val
END
END
END

A Real-Time Profiler/Analyser for XOberon/PowerPC 41

Results

m1, m2 are the two matrices to multiply3 is the resultgim is the
dimension of the matrices.

ALGORITHM 5. Array maximum

FORj:=0TO len-1 DO
afjj:=0

END;

FORj:=0TO loop DO
max := MIN(TYPE);
FORi:=0TO len-1 DO

IF max < a[i] THEN
max := ali]
END
END
END

a is the array to analysetax the array maximumien the legth of the
array.

In the preceding code-snippet, the array maximum computation is not
efficiently coded, since a max-value is unnecessarily substituted by
an equal one (the array is always initialized with a series of zeros).
This ensures that the longest path is always executed. The same effect
can be obtained by using an array composed by an increasing strictly-
monotonic series.

The prediction with these four tests produced very small errors

(Table 4, “Test results,” on page 41). This confirms that when the pro-

filed code presents a certain homogeneity the predictor is able to pro-
file the processor usage with a good precision.

Although the four tests have similar prediction error results, they
show a different processor behaviour. In the following table some of
the process characteristics are shown.

TABLE 5. Test datd®

MatMul MatMulFP Max MaxFP
FCE 0.0017 0.0014 0.1022 0.1145
p 3.66 3.12 4.09 4.17
IPC (mean) 1.8839 1.5804 1.1727 0.7103
stallnit 0.51 0.26 1.66 2.66
length 1.10 1.32 1.00 1.77
stallgispatch 0.09 0.13 0.19 0.33

a. The FCE, stalhy, and stallispatch@re expressed in cycles per instruction.

42 A Real-Time Profiler/Analyser for XOberon/PowerPC

Whetstone results

5.4

Note that instructions parallelism greater than four are possible
although the processor fetches only four instruction per cycle,
because the processor parallelism is defined as the average number of
instructions concurrently in-flight on the seven execution units.

The errors are due for the greatest part to the lack of an exact moni-
toring of the pipeline stalls, especially the number of stalls in the exe-
cution units, that reached 12 cycles per instruction for the FPU in the
MaxFP test. The cause of this value (clearly too high) is that all the
FPU computations are dependent on the operands’ address computa-
tions. Most of the dependencies are considered as stalls, although
they are resolved before leaving the reservations stations.

Another part of the error is surely to attribute to the instruction length
approximation that, in the case of small basic blocks, (as it is in the
tests) can produce some imprecisions.

Whetstone results

The Whetstone test is the major synthetic benchmark program,
intended to be representative for numerical (floating-point intensive)
programming. Based on statistics gathered at the National Physical
Lab in England, using an Algol 60 compiler, which translated Algol
into instructions for the imaginary Whetstone machine. The compila-
tion system was named after the small town of Whetstone, outside the
city of Leicester, England, where it was designed [16].

Synthetic benchmarks try to match the average frequency of opera-
tions and operands of a large set of programs, but are often not repre-
sentative of the reality

The benchmark is a collection of eight (in the original version,
eleven) different small tests:

« Simple identifiers (floating-point arithmetic)

« Array elements (floating-point arithmetic with array elements)

« Array as parameter (the above test embedded in a procedure, the
array is passed as a reference parameter)

« Conditional jumps (if-then-else statements)

1. “No user runs synthetic benchmarks, because they don't compute anything a user could
want. Synthetic benchmarks are, in fact, even further removed from reality because kernel
code is extracted from real programs, while synthetic code is created artificially to match
an average execution profile. Synthetic benchmarks are nopmgssof real programs,
while kernels might be.”

—Hennessy and Patterson [17, p. 21]

A Real-Time Profiler/Analyser for XOberon/PowerPC 43

Results

9.5

 Integer arithmetic

« Procedure calls (floating-point arithmetic embedded in a proce-
dure)

« Array references (assignments between array elements)
 Integer arithmetic (additions and subtractions)

The test parts are embedded in completely disjoint cycles, repeated
many times.

FIGURE 11. The structure of the Whetstone benchmark

The benchmark can be considered as a collection of small separate
code patterns. The different fragments are not similar and generate
very different processor utilisation data; moreover they exhibit very
different instruction parallelism. With our approach, statistics are
computed as mean values, and they do not apply well to the very dif-
ferent code parts of Whetstone, leading to prediction errors. By ana-
lysing the different benchmark sections separately we found errors in
the range -5% — +10%, as in the other four simple tests.

This test can be seen as a good method to observe the predictor’'s
behaviour, when the heterogeneity of the code is maximally stressed.
Although the difficulties presented by the code pattern hinder a pre-
cise prediction, the results are acceptable within a factor-2 of the cor-
rect value.

When developing the different approximations, attention was paid to
the consequence of errors, trying to prefer higher values over lower
ones. This test is compliant to this technique, since the predicted
duration is higher than the worst case.

Notice that, if the specified duration for a task is too high, only the
system performance is affected (in term of utilization); on the con-
trary a value under the effective run time would undermine the sys-
tem’s stability.

Runge—Kutta method

The Runge-Kutta method numerically computes a solution for differ-
ential equations, approximating the solution of the initial value prob-

44

A Real-Time Profiler/Analyser for XOberon/PowerPC

Polynomial evaluation

5.6

lem y'=f(t, y) with y(a) = y over [a,b] with an error control and
variable step-size method.

ALGORITHM 6. Runge-Kutta Method?

h:=0.1; Xg := x0; yg := yO0;
FORk:=0TOlen-2DO

Xk := Xg + K*h;

kg =Xk, Yi;

ko 1= f(x + 1/2*h, yi + 1/2*h*ky);

k3 = f(xc + 1/2*h, y, + 1/2*h*k,);

kg 1= f(xg + h, yx + h " k3);

Yie1 1= Vit 6™ (kg + 2%k +2%k3 + ky)
END

The high number of function calls, present in this test, cause a predic-
tion higher then the correct value. The procedure calls, in fact, reduce
the code locality. As in the preceding examples the number of stalls in
FPU is wrongly reported.

Polynomial evaluation

This small test combines memory accesses and floating point compu-
tations evaluating a polynomial. We used the well-known Horner's
rule to compute the value of the polynonpadt the poini.

ALGORITHM 7. Polynomial evaluation

FORk:=0TO n-1 DO

x[k] :=1.5;
clk] :=0.4
END;

FORi:=0TOlen-1DO
p :=c[n-1];
FORk:=n-2TO 0BY -1 DO
p = c[k] + (X + x[K])*p
END
END

The code uniformity of this test produce good results, near to the cor-
rect value. The small error is probably caused, as in many other cases,
by the wrong number of stalls in the FPU that reached 14 stall cycles
per instruction. The code produced does never use the MCIU reduc-

1. y(x)=¢€, f(x, y)=y

A Real-Time Profiler/Analyser for XOberon/PowerPC 45

Results

5.7

5.8

ing the number of used units, and provoking a higher stall value in the
dispatch unit due do unit’s unavailability.

Distribution counting

The distribution counting algorithm sorts a file of N records whose
keys are integers between 0 and M. The idea is to count the number of
keys with each value and them use the counts to move the records
into position on a second pass through the file.

ALGORITHM 8. Distribution Counting

FORj:=0TO M-1 DO

count[jl:=0
END;
FORi:=0TO N-1DO
count[ali]] := count[a[i]] + 1
END;

FORj:=1TO M-1DO
count[j] := count[j-1]+count[j]
END;
FORi:=N-1TO0BY -1DO
b[count[a[i]]-1] := a[il;

count[ali]] := count[a[i]]-1
END;
FORi:=0TO N-1DO

ali] := bli]
END

This test presents a very low error rate (8%) since it does not use
floating-point arithmetic, and uses only sparingly the MCIU, avoiding
the stall imprecisions. This demonstrate the soundness of the predic-
tor when the performance monitor data are attendible.

Drivers timing

The only obstacle to the MAXT computation for actual real-time
applications, is the XOberon drivers’ structure. The drivers are
objects retrieved from a database, by querying their names. It is obvi-
ously not possible to know the duration of a driver method at compile
time, but theeLENGTH construct helps us to specify its length.

We only need to compute the different methods’ length for the drivers
used by the profiled task. A theoretical length measurement is very
difficult because of the many hardware dependencies, but fortunately
the drivers normally have a linear structure, resulting in very uniform

46

A Real-Time Profiler/Analyser for XOberon/PowerPC

LaserPointer

execution times—they normally perform a simple read or write
access. This allows an experimental measurement of their duration
over a big set of samples. The next example presents the code pattern
used for the drivers timing.

EXAMPLE 7. Driver method length measurement

GetObj(“name”, obj”);
PerformanceMonitor.Start();
FORi:=0TO lterations-1 DO
monitorOn();
obj(type).method;
monitorOff()
END;
PerfomanceMonitor.Stop();
length := PM.cycles/Iterations - lengthonitoroft

The test module retrieves the object from the system database
(GetObj) and repeatedly invokes the driver's method a given number

of times. The performance monitor is switched on and off, exactly

before and after the call to avoid the loop interferences.

With this simple scheme we are able to compute with a minimal
effort the driver method’s lengths. Note that this measurements must
be done only once for a given driver on a given machine.

5.9 LaserPointer

The first test on a real application was done on the LaserPointer. The
LaserPointer is a test and example machine, which moves a laser pen
applied on the tool-centre-point (TCP) of a 2-joints (2 DOF) manipu-
lator.

The three real-time tasks of the robot-control application were pro-
filed, with the following results.

TABLE 6. LaserPointer results

Task Measured value MAXT
WatchDogHandler| 869 cycles 860 cycles
PlannerHandler 891 cycles 894 cycles
ControllerHandler| 2189 cycles 3214 cycles

The WatchDogHandler is a very small task with a linear code, and
therefore the longest path (i.e. the only existing path) is always taken.

A Real-Time Profiler/Analyser for XOberon/PowerPC 47

Results

5.10

5.1

The result for this test (-0.99%) is to be compared to the first four
simple tests of the preceding section.

The other two values are more difficult to check, since we are not able
to force the longest path execution at run-time, but the results are
coherent: they are greater or equal than the measured value, and they
have a plausible value.

The application required very little adaptation to be profiled: we only
inserted fiveLENGTH constructs for the drivers calls, and changed
the procedure MathL.exp, which was recursive.

Hexaglide

The Hexaglide is a project developed at the Institute of Machine
Tools of the Swiss Federal Institute of Technology Zurich [18]. The

machine is a parallel manipulator with 6-DOF intended to be used as
a high speed milling machine.

TABLE 7. Hexaglide results

Task Max run-time MAXT

TrajectoryHandler | 0.058 ms 0.052 ms
DynamicsHandler | 0.286 ms 0.451 ms
LearnHandler 0.065 ms 0.065 ms

The table presents the results obtained by profiling three real-time
tasks of the Hexaglide software. The first column contains the maxi-
mal duration noticed at run time and the second one contains the pre-
dicted MAXT. We achieved very good results very near to the
measured maximal value.

Related work

The source level analysis approach was already used in several works
[7, 8], with a large use of bounding constraints, using deterministic
CISC machines. These works compute good predictions, but the
approach does not have a practical meaning when applied to modern
processor architectures where the instruction length is not simply
deducible.

P. Pushner and Ch. Koza [8] presented an interesting refinement to the
longest path approach, adding knowledge to analysed programs. The
user inserts information in the source code, since he knows the pro-
gram characteristics, to help reducing the worst case.

48

A Real-Time Profiler/Analyser for XOberon/PowerPC

Oberon language changes

5.12

5.13

There are several run-time monitoring projects, but because of the
higher precision requirements they are usually deployed on custom
architecture with heavy hardware support, such as the ProfileMe
DIGITAL project [15]. Our profiling approach is too imprecise for
discussing processor performance or evaluating produced code, but it
adapts well to the charter of this work. As indicated the other actual
performance monitor tools achieve much better accuracies but require
hardware support or breakpoints in the profiled task.

Oberon language changes

The influence on existing code brought by the new Oberon constructs
is very small, as we noticed in the performed tests. The changes
needed for profiling a big application with the new tool are negligible,
with average rates of 3-BOUND introductions every 100-Kbytes of
code. The system software needed only a small change in the expo-
nential function computation (MathL module), which was pro-
grammed recursively. Small applications like the LaserPointer were
profiled without any adjustment (excluding the drivers’ length speci-
fications). The number of different driver’s calls in an application, i.e.
differentLENGTHSs to specify, is normally small, reducing the user’s
effort. In the following table the number of changes in the code for
some applications are shown.

TABLE 8. Changes in the source code of existing applications

Module Length BOUND | LENGTH | Other
LaserPointer 25 Kbytes - 5

MathL 14 Kbytes 1 - 1 recursive
(FP library) procedure
Hexaglide [18] 54 Kbytes| 2 4

Performance Mon- 20 Kbytes 1

itor and scheduler

Optimization performance

The constant propagation optimization performed on the code does
not normally improve—or only in minimal part—the tasks perform-
ance, because of its simplicity and little degree of utilization. A com-
plete common subexpression elimination would for sure be of greater
benefit, especially in array indices computations.

A Real-Time Profiler/Analyser for XOberon/PowerPC 49

Results

5.14

5.15

Penalties when using the performance
monitor.

The code to enable the performance monitoring is, has seen, very
simple and does not affect the system performance. The additions to
the scheduler to gather the monitored data cause, indeed, an over-
head. The insertion of code, for approximately 31 processor cycles, in
the scheduler produces a very small performance loss, i.e. about
0.10%.

Real-time Oberon programs

The work gave us the possibility to analyse the processor behaviour
with the XOberon system and several application. This data, although
not directly relevant to the problem, are very interesting and deserve
to be mentioned.

The following table shows typical values gathered by monitoring the
XOberon system code alone, and with some real-time tasks running.

TABLE 9. Performance monitor data

Event XOberon Applications
IPC 0.59 1.10

CPI 1.68 0.91

p 1.86 2.88

Loads (misses) 25.8% (0.66%) 12.41% (0.05%)
Stores (misses) 13.22% (0.00% 4.93% (0.12%
FCE 0.04 0.00

Miss penalty 25.62 18.53

Stall cycles in the execution units 1.32 0.87
BPU load 19.2% 13.6%
SCIU load 20.0% 61.4%

Although L1-cache misses on the used boards have high penalties—
between 20 and 30 cycles—the FCE is always small. This is a direct
consequence of the real-time program’s simplicity, leading to a big
code locality. The compactness of the XOberon kernel contributes to
the good utilisation of the on-board caches, usually fitting in 4-8-
Kbytes data—cache for the scheduler’s basic operations. The reason of
the reduced memory accesses is the small use of dynamic structures
by the real-time processes.

The average IPC is usually small, compared to the processor maxi-
mum of four. This is a direct consequence of the smallness of the

50

A Real-Time Profiler/Analyser for XOberon/PowerPC

Real-time Oberon programs

basic blocks, and the high number of branches. Data dependencies
worsen the situation further by lowering the code parallelisation. The
XOberon system code has very few mathematical computations, and
contains a lot of branches (20%) resulting in a very low IPC (0.6).

A Real-Time Profiler/Analyser for XOberon/PowerPC 51

Results

52 A Real-Time Profiler/Analyser for XOberon/PowerPC

CHAPTER 6

Conclusions and
future directions

6.1

Conclusions

This works shows the feasibility of a source code timing prediction tool
for real-time tasks and its limits. The simplicity of the programs allows for
an automated analysis, but the modern hardware hinders a precise predic-
tion. The performance of modern processors is becoming increasingly dif-
ficult to understand: the dynamic nature of out-of-order issue and
completion, coupled with dynamic branch prediction, speculative execu-
tion paths, and with the complexity of deep memory hierarchies, makes it
impossible to predict program behaviour solely through static code analy-
sis.

The run-time monitoring approach is very helpful when, as in this work,

the tasks are simple and relatively homogeneous, but shows its limits
when the application complexity grows. The hardware performance
counters found in existing processors, which cannot accurately attribute
events to the single instruction types, do not allow a precise prediction.

The instruction length computations showed the soundness of the cycle
per instruction metric separation suggested by P.G. Emma in timings pre-
diction as in the field of performance evaluation [11].

The obtained results encourage the use of the tool in the real world, pro-
ducing meaningful values and avoiding their guessing by the programmer.

The clean integration of the performance monitoring tool in the XOberon
system provides the user with a transparent infrastructure with a low over-
head making it practical for continuous profiling, although the retrieved
data does not guarantee a big precision.

A Real-Time Profiler/Analyser for XOberon/PowerPC 53

Conclusions and future directions

6.2

A wealth of additional information was also collected, providing
interesting data about the interactions between instructions, including
concurrency levels, and pipeline utilization, in either the XOberon
system or user applications. This helps the programmers and com-
piler-writers to better understand the processor behaviour, and to
improve the code quality.

Future directions

The source code analysis has place for several improvements, espe-
cially in the terminating conditions where more complex structures
could be analysed. Recursive depth computation could also be imple-
mented.

An important progress could be achieved by the introduction of the
programmers’ knowledge in the source code analysis. The user could
help the profiler to eliminate excluding source paths.

EXAMPLE 8. Lack of knowledge

cur := first;
WHILE cur # NIL DO (*BOUND 10000%)
IF cur.name = “Dilbert” THEN
DoSomething(cur)
END;
cur := cur.next
END;

In this short example a long list of people is scanned searching for the
ones named Dilbert, and if the element is found some operation is
done on the person’s record. The user could know that the number of
individuals with the searched name is very small, but the profiler adds
the time for thelF construct to each iteration. The introduction of
knowledge could allow the user to specify a maximal number of exe-
cutions for a given code snippet.

The instruction length computation with the performance monitoring
approach has also room for several improvements. A monitoring tool
giving information on an instruction basis could be used to increase
the accuracies, or the measurements could be integrated with pipeline
simulation in order to better understand some phenomena as the pipe-
lining in the single execution units.

54

A Real-Time Profiler/Analyser for XOberon/PowerPC

APPENDIX A

File formats

A1

The following section provides the format of the processor description
file, and the performance monitor information file, described in EBNF
syntax.

Processor description file

The processor description file contains static information about the
PowerPC architecture. It includes the processor clock and a list with all
the instructions indicating their timing characteristics.

File = NAME String FREQUENCY number InstructionList.

Serialization = “-” | “Execute” | “I/O” | “FPempty” |“Postdispatch” |
“String/multiple” | “Dispatch/execute” | “Complete”.

Unit = “MCIU” | “SCIU” | “FPU” | “BPU” | “CRU” | “LSU” |
“Completion”.

Bus =“1"| “0".

Early = “17 | “0”.

InstructionList = INSTRUCTION { Name Unit Length Throughput
Bus Regs Early Serialization }.

Early exitindicates instructions that can complete earlier than specified in
case of special conditionBusindicates a bus access by the instruction.
Regsindicates the number of register involved (as in string manipulation
operations).

EXAMPLE 9. Processor description file

NAME PPC604e
FREQUENCY 300
INSTRUCTIONS
add SCIU11000-

A Real-Time Profiler/Analyser for XOberon/PowerPC 55

File formats

adde SCIU 1 1 0 0 0 Execute
stmw LSU 2 2 0 1 0 String/multiple
fres FPU 18 18 0 0 0 FPempty
eciwx LSU 2 2 1 0 0 Execute

A.2 Performance monitor information file

PMinfoTag = 07X.
File = PMInfoTag CPI FCE p stalldispatch staIISC|U staIIMC|U

staIIFpU staIIBpU staIILSU IoadSC|U IoadMC|U Ioad,:pu
|OadBpU |Oad|_su.

All the values are IEEE 754 single precision values in little endian
mode.

56 A Real-Time Profiler/Analyser for XOberon/PowerPC

APPENDIX B

Implementation problems

B.1

B.2

Compiler integration

The structural complexity of the Oberon compiler has grown in the last
years. The original Ceres Oberon compiler was adapted to the various
architectures (Motorola 680x0, Intel 80x86, MIPS, POWER, and
PowerPC) and to the language changes (Oberon-2). The parse tree as
intermediate representation was added to support the code generation for
different processors. The lack of a compiler rewrite with a clean interme-
diate representation, hinders the addition of optimization techniques.

The profiler/analyser generates useful data, which could be used to
improve the code quality, but unfortunately the work needed to introduce
the changes is too big, nearly approximating a complete rewrite.

Constant propagation and reaching definitions

To compute the number of loop iterations, we performed some data flow
analysis: constant propagation and folding, and reaching definitions.

The introduction of the additional intermediate representation and the
large use olise-defchains andit-vectorscaused several memory prob-
lems, because there is no automatic memory reclamation during an
Oberon command execution. The MacOberon garbage collector is called
only after a constant number of command’s calls. We were thus obliged to
maintain an alternative memory management with a pool of disposed
memory blocks to recycle.

A Real-Time Profiler/Analyser for XOberon/PowerPC 57

Implementation problems

B.3

Performance monitor

The biggest problem with the performance monitor implementation
was the faulty documentation. The PowerPC 604e User Manual [12]
is full of typographical and structural errors.

A wealth of small errors are present in the specification of the per-
formance monitor events (e.g. unit misleading, wrong bit numbering).

As precedently seen by the computation of the instruction stalls,
some events are even wrongly specified. By the multiple cycle units
the number of missing operand (unresolved dependencies) in the res-
ervation stations is stated as the number of stall cycles.

58

A Real-Time Profiler/Analyser for XOberon/PowerPC

APPENDIX C

User interface

C.1

Oberon Compiler

In this small section the new compiler options needed for the profiling tool
are presented.

We added the possibility to tell the compiler to ignore the module
SYSTEM during the cycle length computation (\S optid®ySTEM pro-

vides the user the possibility to write data at a given memory address with-
out any checks. This feature is very useful and indispensable when writing
drivers, but insane for code optimization. A generic memory write invali-
dates everything that was precedently defined since it could destroy any
stored data structure.

The programmer, which specifies to ign8M¥STEM, asserts that memory
accesses are only used to access peripherals, and that no program variable
is touched byYSYSTEM calls.

When not specified, ever§YSTEM memory access invalidates all the
constant definitions resulting in very poor constant propagation results.
Since the constant propagation, and reaching definitions analysis are
essential to the automatic loop bounding, we chose to allow this compro-
mise, although the use 8¥STEM could be inherently dangerous.

The procedures to be profiled are specified between the compiler options
and the module name in the following way:

["[" procname ["+"]{"," procname ["+"]}"]"]

The “+” sign after the procedure name indicates that the tasks or proce-
dure must be run-time monitored. This cause the compiler to set a bit in

A Real-Time Profiler/Analyser for XOberon/PowerPC 59

User interface

the machine status register of the task, so that the PowerPC perform-
ance monitor will consider it during the measurements.

In order to profile a procedure the performance monitor information
file and the processor description file must be in a Oberon System
readable directory (Oberon path).

C.2 PowerPC Performance Monitor

The PerformanceMonitor module acts as the user interface for the
performance monitor. It provides the following commands:

« PerformanceMonitor.Start

Starts the tasks’ monitoring.
« PerformanceMonitor.Stop

Stops the tasks’ monitoring. No data is cleared.
« PerformanceMonitor.Info

Prints general information about the tasks processor utilization, including the
units loads, stalls, and idle cycles, the memory accesses, and cache misses.

« PerformanceMonitor.Info taskld ~

Same as above, but prints information about the specified real-time periodic
task. The performance monitor in not able to distinguish the different run cycles
of a periodic task, thus requiring a special treatment.

« PerformanceMonitor.Restart

Restarts the performance monitor, resetting all of the collected data.
« PerformanceMonitor.LSUInfo

Prints detailed information about the LSU stalls.
« PerformanceMonitor.WritelnfoFile

Creates the performance monitor information file.

Additional commands have been implemented for the monitoring of
the XOberon system scheduler.

« PerformanceMonitor.MonitorSchedulerStart

Starts the system’s scheduler monitoring. The gathered data can be retrieved
with the usual commands (Info, LSUInfo and WritelnfoFile).

« PerformanceMonitor.MonitorSchedulerStop
Stops the system'’s scheduler monitoring.

60 A Real-Time Profiler/Analyser for XOberon/PowerPC

APPENDIX D

Profiler/Analyser Structure

D.1

This section presents the changes operated on the MacOberon Compiler,
including the new modules added.

List of compiler changes by module

The following list shows the different modules, a small description, and
the modifications brought to the source. The new modules introduced by
this work have their name in boldface.

PPCOOPM: Low level file support, and error managing.
The support for the additional symbol file with procedure length was
added.

PPCOOPS: Scanner.
The module was modified for the recognition of the new constructs:
LENGTH andBOUND.

PPCOOPD: Special profiler files interface.

This module acts as an interface to the processor description file and the
performance monitor data file. It provides a scanner and a parser to unseri-
alize the information contained in the files.

PPCOOPT: Type definitions and symbol file generation.

The code for the generation of the additional symbol file with the proce-
dure length was added to module. It also contains all the definitions of the
objects needed for the data flow analysibasc blockandbit vectors

PPCOOBYV: Bit vectors.
In addition to the implementation of the bit vectors methods, the module

A Real-Time Profiler/Analyser for XOberon/PowerPC 61

Profiler/Analyser Structure

also contains the special memory management needed imsetuef
chains. The disposed chain elements are stored to be recycled.

PPCOOBB: Basic blocks.

This important module, contains all the routines needed for the man-
agement and building of the additional intermediate representation.
This includes computation of instruction length with the data pro-
vided by the performance monitor data file.

PPCOOPL, andPPCOOPC: Code generation.

All the generated instructions are signaled tofRREOOBB module,

so that their length can be computed and added to the corresponding
basic block.

PPCOOD: Decoder.
Decodes all the instructions contained in the inline procedures, and
reports them to thePCOOBB module.

PPCOOPV, PPCOOPB, andPPCOOPP: Parser modules.

The handling of the new restrictions and construBBUND and
LENGTH) was added, including the generation of the appropriate
parse tree nodes for the run-time bound value check. This module
also reports the calling of proceduresRBCOOBB so that their
length can be added to the appropriate block.

PPCOOCP: Constant propagation.
Includes all the data flow computations for the copy propagation
problem.

PPCOORD: Reaching definitions.
Includes all the data flow computations for the reaching definition
problem.

PPCOOLA: Loop analysis.
Contains all the automatic bounding routines including the termina-
tion condition analysis.

PPCOODAG: Directed acyclic graph management.
Contains the longest path and loop unrolling computations.

Compiler: Interface module.
Contains the support for the new compiler options and coordinates all
the compile and profile phases.

62

A Real-Time Profiler/Analyser for XOberon/PowerPC

Reference list

1]

2]

3]

4]

5]

6]

7]

R. Brega.

A real-time operating system designed of predictability and
run time safety.

Proceedings of The Fourth International Conference on
Motion and Vibration Control (MOVIC)pp 379-384.

Institute of Robotics, ETH, Zurich 1998.

R. Brega, and S.JWestli.

A had real-time opeating system for nobatronics.
Not published, ETH Zurich, June 1998.
http:/Avww.ifr.mavt.ethz.ch/

N. Wirth, and J. Gutknecht.
Project Oberon.
Addison-Wesley, 1992.

H. Mossenbock.
Object-Oriented Programming in Oberon-2.
Springer-Verlag, 1993.

Ingo Wegener.
Theoretische Informatik.
B.G. Teubner, Stuttgart, 1993.

M. Franz and T. Kistler.
Slim Binaries
Communications of the ACML(12):87-94, 1997.

C.Y. Park, and A.C. Shaw.

Experiments with a program timing tool based on source-
level timing schema.

Computer\ol. 24, No. 5, IEEE, May 1991, pp. 48-57.

A Real-Time Profiler/Analyzer for XOberon PPC 63

8]

9]

10]

11]

12]

13]

14]

15]

16]

17]

P. Puschner, and Ch. Koza.

Calculating the maximum execution time of real-time
programs.

The Journal of Real-Time Syste(hs159-176, 1989.
Kluwer Academic Publishers, The Netherlands, 1989.

A.V. Aho, R. Sethi and J.D. Uliman.
Compilers: Principles, Techniques and Tools.
Addison-Wesley, 1983

E. W. Dijkstra.
A note on two problems in connection with graphs.
Numerische Mathematiit:269-271, 1959

P.G. Emma.
Understanding some simple processor-performance limits.
IBM Journal of Research & Developmefitl(3), 1997.

IBM Microelectronics Division and Motorola Inc.
PowerPC 604/604e RISC Microprocessor User’'s Manual.
Motorola, 1998.

Also available in electronic form at: http://www.mot.com/
SPS/PowerPC/teksupport/teklibrary/manuals/604UM.pdf

IBM Microelectronics Division and Motorola Inc.
PowerPC Microprocessor Family: The Programming
Environments.

Motorola, 1994.

Also available in electronic form at: http://www.mot.com/
SPS/PowerPC/teksupport/teklibrary/manuals/pem32b.pdf

F.E. Levine, and C.P. Roth.

A programmer’s view of performance monitoring in the
PowerPC microprocessor.

IBM Journal of Research & Developmetitl(3), 1997.

J. Dean et al.

ProfileMe: Hardware support for instruction-level profiling
on out-of-order processors.

Proceedings of Micro-3AEEE, 1997.

H.J. Curnow, and B.A. Wichmann.

A synthetic benchmark.

The Computer JourndXX(1):43-79, 1976.
Oxford University Press.

J.L. Hennessy, and D.A. Patterson.
Computer Architecture a Quantitative Approach.
Morgan Kaufmann, San Francisco, second edition 1996.

64

A Real-Time Profiler/Analyzer for XOberon PPC

18]

M. Honegger, A. Codourey, and E. Burdet.
Adaptive control of the Hexaglide, a 6 dof parallel
manipulator.

IEEE International Conference on Robotics and
Automation, Albuquerque, USA, April 1997.

D. Bertsekas, and R. Gallager.
Data Networks.
Prentice-Hall, New Jersey, second edition 1992.

G. Kackmarcik.
Optimizing PowerPC Code.
Addison-Wesley, 1995.

N.P. Jouppi and D.W. Wall.

Available instruction-level parallelism for superscalar and
superpipelined machines.

Proceedings of the Third International Conference on
Architectural Support for Programming Languages and
Operating Systems.

Boston, Massachusettes, April 1989

N. Wirth.
Compiler Construction.
Addison-Wesley, 1996.

A Real-Time Profiler/Analyzer for XOberon PPC 65

66

A Real-Time Profiler/Analyzer for XOberon PPC

Acknowledgments

I would like to thank the following persons.

Roberto Brega, my supervisor assistant, for his willingness to
actively support me during my work, for his invaluable hints, and for
reviewing this report’s draft.

Prof. Thomas Gross, for having accepted to be my supervising pro-
fessor.

Mr. Charles P. Roth, at the IBM Somerset Design Center, for the very
helpful explanations and suggestions about the documentation faults
and performance monitor architecture.

Mr. Michael Naef for the useful information on the DIGITAL Con-
tinuous Profiling Infrastructure Project.

My family that morally and financially supported me during these
years, and allowed me to accomplish my computer science studies in
Zurich.

All my friends, especially Gabriele, who carefully read the draft of
this thesis, and Andrea and Luca who gave me valuable suggestions
about the work.

A Real-Time Profiler/Analyzer for XOberon PPC 67

	Introduction
	Abstract
	XOberon
	PowerPC 604e overview
	FIGURE 1.� 604e block diagram
	FIGURE 2.� Pipeline diagram

	Problem statement
	Source-code analysis
	Preconditions
	Changes in the Oberon language
	BOUND
	LENGTH
	Intermediate representation
	FIGURE 3.� Compiler structure

	Exceptions
	Procedure calls
	Inline procedures
	Imported procedures
	Loop detection
	FIGURE 4.� Parse tree structure

	Loop termination
	FIGURE 5.� Loop structure
	TABLE 1. Iterations computing rules
	TABLE 2. Simplification example

	User feedback
	Run-time errors

	Loop elimination
	FIGURE 6.� Loop elimination

	A fine-grained approach to the duration computation
	Hardware and system preconditions
	FIGURE 7.� PowerPC 604e Performance Monitor implementation

	PowerPC 604e Performance Monitor
	Cycles per instruction
	Instruction length computation
	TABLE 3. Execution latencies and throughput
	FIGURE 8.� Instruction pipelining

	Finite Cache Effect
	Dispatch stalls
	Execution units stall cycles
	FIGURE 9.� Dependencies in the reservation stations, code example
	Stalls in single cycle units
	Stalls in multiple cycles units

	Instruction parallelism
	Some remarks on the instruction length computation

	Results
	Test strategy
	FIGURE 10.� Example of test-strategy validation

	Timing correctness when the longest-path trace is known
	TABLE 4. Test results

	Matrix multiplications and array maximum
	TABLE 5. Test data

	Whetstone results
	FIGURE 11.� The structure of the Whetstone benchmark

	Runge–Kutta method
	Polynomial evaluation
	Distribution counting
	Drivers timing
	LaserPointer
	TABLE 6. LaserPointer results

	Hexaglide
	TABLE 7. Hexaglide results

	Related work
	Oberon language changes
	TABLE 8. Changes in the source code of existing applications

	Optimization performance
	Penalties when using the performance monitor.
	Real-time Oberon programs
	TABLE 9. Performance monitor data

	Conclusions and future�directions
	Conclusions
	Future directions

	File formats
	Processor description file
	Performance monitor information file

	Implementation problems
	Compiler integration
	Constant propagation and reaching definitions
	Performance monitor

	User interface
	Oberon Compiler
	PowerPC Performance Monitor

	Profiler/Analyser Structure
	List of compiler changes by module

	Reference list
	Acknowledgments

